Skip to main content
Log in

Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Isothermal time-temperature-localized corrosion-behavior curves were determined for the Al-1.8Li-2.70Cu-0.6Mg-0.3Zn alloy AF/C458, to understand the effect of slow or delayed quenching on localized corrosion susceptibility. Alloy samples were subject to a series of systematic interrupted quenching experiments conducted at temperatures ranging from 480 °C to 230 °C for times ranging from 5 to 1000 seconds. Individual samples were then exposed to an oxidizing aqueous chloride solution consisting of 57 g/L NaCl plus 10 mL/L H2O2 to induce localized attack. The localized corrosion mode was characterized by optical microscopy. Additionally, the microstructure of selected samples was characterized by transmission electron microscopy (TEM) to relate the corrosion mode and morphology to microstructural features. Results showed that only pitting attack was exhibited by samples subjected to isothermal treatment at temperatures greater than 430 °C. At temperatures ranging from 280 °C to 430 °C, isothermal treatment tended to induce susceptibility to intergranular attack (IGA) and intersubgranular attack (ISGA) for all treatment times investigated. For isothermal treatments at temperatures lower than 280 °C, only pitting was observed for treatment times less than about 30 seconds, while IGA and ISGA were observed for longer treatment times. Comparisons showed that the time-temperature domains for IGA and ISGA were virtually coincident. Based on this finding and the results from TEM characterization, IGA and ISGA appear to be related to the precipitation of a Zn-modified T 1 (Al2(Cu,Zn)Li) precipitate, which can occur both on low-angle and high-angle grain boundaries in this alloy. When the alloy is resistant to IGA and ISGA, the grain boundaries are decorated by θ′ (Al2Cu), and T B (Al7Cu4Li) phase particles, or subgrain boundaries are populated by a comparatively low density of T 1 precipitates. It is, therefore, speculated that θ′ and T B are more corrosion-resistant precipitate phases than T 1, and that a critical concentration of boundary T 1 must exist for IGA or ISGA to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Chen, A.K. Kuruvilla, T.W. Malone, and W.P. Stanton: J. Mater. Eng. Performance, 1998, vol. 7, pp. 682–90.

    Article  CAS  Google Scholar 

  2. A.K. Hopkins, K.V. Jata, and R.J. Rioja: Mater. Sci. Forum, 1996, vol. 217–222, pp. 647–52.

    Google Scholar 

  3. V.K. Jain, K.V. Jata, R.J. Rioja, J.T. Morgan, and A.K. Hopkins: J. Mater. Proc. Technol., 1998, vol. 73, pp. 108–18.

    Article  Google Scholar 

  4. “Workshop on the Characterization of Al-Li Alloy AF/C458,” a collection of slides, K. Jata, ed., Aluminum-Lithium Workshop, Wright Patterson AFB, Dayton, OH, 1998.

    Google Scholar 

  5. R.G. Buchheit, J.P. Moran, and G.E. Stoner: Corrosion, 1994, vol. 50, pp. 120–30.

    CAS  Google Scholar 

  6. W.L. Fink and L.A. Willey: Trans. AIME, 1948, vol. 175, pp. 414–27.

    Google Scholar 

  7. H.K. Hardy and J.M. Silcock: J. Inst. Met., 1955–56, vol. 84, pp. 423–30.

    Google Scholar 

  8. J.C. Huang and A.J. Ardell: Mater. Sci. Technol., 1987, vol. 3, pp. 176–88.

    CAS  Google Scholar 

  9. B. Noble and G.E. Thomson: Met. Sci. J., 1972, vol. 6, pp. 167–74.

    Article  CAS  Google Scholar 

  10. R.G. Buchheit and G.E. Stoner: Al-Li Alloys V, MCE Publications, Ltd., Birmingham, United Kingdom, 1989, pp. 1347–56.

    Google Scholar 

  11. J.M. Silcock: J. Inst. Met., 1959–60, vol. 88, pp. 357–64.

    Google Scholar 

  12. N.J. Kim, J.M. Howe, and E.G. Boden: J. Phys., 1987, vol. 48 (9), C3, pp. 457–63.

    Google Scholar 

  13. JCPDS-ICDD, File 40-1158.

  14. K. Schneider and M. von Heimendahl: Z. Metallkd., 1973, vol. 64, pp. 342–47.

    CAS  Google Scholar 

  15. H.M. Flower and P.J. Gregson: Mater. Sci. Technol., 1987, vol. 3, pp. 81–90.

    CAS  Google Scholar 

  16. R.G. Buchheit, J.P. Moran, and G.E. Stoner: Corrosion, 1990, vol. 46, pp. 610–16.

    CAS  Google Scholar 

  17. D. Mathur: Master’s Thesis, Ohio State University, Columbus, OH, 2000.

    Google Scholar 

  18. H.F. DeJong and J.H.M. Martens: Aluminium, 1985, vol. 61, pp. 416–20.

    CAS  Google Scholar 

  19. P. Niskanen, T.H. Sanders, Jr., M. Marek, and J.G. Rinker: Al-Li Alloys I, TMS-AIME, Warrendale, PA, 1981, pp. 347–76.

    Google Scholar 

  20. L. Christoudoulou, L. Struble, and J.R. Pickens: Al-Li Alloys II, Institute of Metals, London, 1984, pp. 561–80.

    Google Scholar 

  21. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth and Co., London, 1976, p. 502.

    Google Scholar 

  22. R.G. Buchheit: J. Electrochem. Soc., 1995, vol. 142, pp. 3394–96.

    Google Scholar 

  23. J.R. Galvele and S.M. DeMicheli: Corr. Sci., 1970, vol. 10, pp. 795–807.

    Article  CAS  Google Scholar 

  24. R.C. Dorward: Mater. Sci. Eng., 1986, vol. 84, pp. 89–95.

    Article  CAS  Google Scholar 

  25. E.I. Meletis: Mater. Sci. Technol., 1987, vol. 93, pp. 235–45.

    CAS  Google Scholar 

  26. T. Sheppard and N.C. Parson: Mater. Sci. Technol., 1987, vol. 3, pp. 345–52.

    CAS  Google Scholar 

  27. J.B. Lumsden and T.A. Allen: Corr. Sci., 1988, vol. 44, pp. 527–32.

    CAS  Google Scholar 

  28. L. Gan and E.I. Meletis: Mater. Sci. Forum, 2000, vols. 331–337, part 3, pp. 1619–24.

    Google Scholar 

  29. R.G. Buchheit, F.D. Wall, G.E. Stoner, and J.P. Moran: Corrosion, 1995, vol. 51, pp. 417–27.

    Article  CAS  Google Scholar 

  30. C. Kumai, J. Kusiniski, G. Thomas, and T.M. Devine: Corrosion, 1989, vol. 45, pp. 294–302.

    CAS  Google Scholar 

  31. F.D. Wall and G.E. Stoner: Corr. Sci., 1997, vol. 39, pp. 835–53.

    Article  CAS  Google Scholar 

  32. E.H. Hollingsworth and H.Y. Hunsicker: Metals Handbook, 9th ed., ASM International, Metals Park, OH, 1987, vol. 13, p. 584.

    Google Scholar 

  33. I.L. Muller and J.R. Galvele: Corr. Sci., 1977, vol. 17, pp. 995–1007.

    Article  CAS  Google Scholar 

  34. S.F. Baumann and D.B. Williams: Al-Li Alloys II, TMS-AIME, Warrendale, PA, 1984, pp. 17–30.

    Google Scholar 

  35. J.R. Pickens, L.S. Kramer, T.J. Langen, F.H. Heubaum, and F.W. Gayle: Aluminum-Lithium Alloys VI, DGM Informationsgesellschaft mbH, Garmisch-Partenkirchen, Germany, 1992, pp. 357–62.

    Google Scholar 

  36. R.J. Kilmer and G.E. Stoner: Scripta Metall., 1991, vol. 25, pp. 243–48.

    Article  CAS  Google Scholar 

  37. R.G. Buchheit, R.P. Grant, P.F. Hlava, B. McKenzie, and G.L. Zender: J. Electrochem. Soc., 1997, vol. 144, pp. 2621–28.

    Article  CAS  Google Scholar 

  38. A.A. Csontos, B.M. Gable, A. Gaber, and E.A. Starke, Jr.: Mater. Sci. Forum, 2000, vols. 331–333, pp. 1333–40.

    Article  Google Scholar 

  39. Atlas of Time Temperature Transformation Diagrams for Non-Ferrous Alloys, G.F. Vander Voort, ed., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 12–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kertz, J.E., Gouma, P.I. & Buchheit, R.G. Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperature. Metall Mater Trans A 32, 2561–2573 (2001). https://doi.org/10.1007/s11661-001-0046-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0046-5

Keywords

Navigation