Skip to main content
Log in

Effect of Aging Temperature on Pitting Corrosion of AA6063 Aluminum Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The pitting corrosion tendency of the as-extruded AA6063 alloy was investigated in this study through immersion corrosion and electrochemical corrosion tests at various aging temperatures. The morphologies of the corroded samples were characterized using OM, WLI, SEM, and TEM. The corrosion resistance of as-extruded alloys with various heat treatments was assessed using an electrochemical workstation and SECM. The surface potential at various positions on the alloy surface was measured using KPFM. The results indicate that as the aging temperature increases, the corrosion mode of the alloy shifts primarily from subcritical pitting corrosion to pitting corrosion. This shift eventually leads to the formation of stable pitting corrosion, and the alloy’s pitting corrosion resistance gradually decreases. Surface potentials vary among different types of second-phase particles, with Mg2Si measuring 1.57 V and β-AlFeSi measuring 2.14 V. The existence of a potential difference between the matrix and the second-phase particles leads to the formation of both crystalline and cathodic pits. As the temperature increases, the number of active sites for pitting corrosion also increases. Longitudinal expansion of the pits takes place along densely packed (100) planes, forming a semi-cubic stepped crystal structure. Lateral expansion of pits occurs parallel to the <001>Al direction, demonstrating filamentous corrosion expansion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article.

References

  1. R. Dubey, R. Jayaganthan, D. Ruan, N.K. Gupta, N. Jones, R. Velmurugan, Int. J. Impact Eng. 172, 104397 (2023). https://doi.org/10.1016/j.ijimpeng.2022.104397

    Article  Google Scholar 

  2. S. Nandy, K.K. Ray, D. Das, Mater. Sci. Eng. A 644, 413 (2015). https://doi.org/10.1016/j.msea.2015.07.070

    Article  Google Scholar 

  3. R.K. Sabat, W. Muhammad, R.K. Mishra, K. Inal, J. Alloys Compd. 889, 161607 (2021). https://doi.org/10.1016/j.jallcom.2021.161607

    Article  Google Scholar 

  4. H.M. Jin, R.G. Guan, D. Tie, Crystals 12, 530 (2022). https://doi.org/10.3390/cryst12040530

    Article  Google Scholar 

  5. S.S.L. Vendra, S. Goel, N. Kumar, R. Jayaganthan, Mater. Sci. Eng. A 686, 82 (2017). https://doi.org/10.1016/j.msea.2017.01.035

    Article  Google Scholar 

  6. I. Dinaharan, N. Murugan, Trans. Nonferrous Met. Soc. China 22, 810 (2012). https://doi.org/10.1016/s1003-6326(11)61249-1

    Article  Google Scholar 

  7. K. Dhoska, I. Markja, E. Bebi, A. Sulejmani, O. Koça, E. Sita, A. Pramono, J. Integr. Eng. Appl. Sci. (2023). https://doi.org/10.5281/zenodo.7978805

  8. C.M. Hell, H.-S. Søreide, R. Bjørge, C.D. Marioara, Y.J. Li, R. Holmestad, J. Mater. Res. Technol. 21, 4224 (2022). https://doi.org/10.1016/j.jmrt.2022.10.139

    Article  Google Scholar 

  9. G. Özer, A. Kisasöz, A. Karaaslan, Mater. Corros. 70, 2256 (2019). https://doi.org/10.1002/maco.201911100

    Article  Google Scholar 

  10. H. Li, P.P. Zhao, Z.X. Wang, Q.Z. Mao, B.J. Fang, R.G. Song, Z.Q. Zheng, Corros. Sci. 107, 113 (2016). https://doi.org/10.1016/j.corsci.2016.02.025

    Article  Google Scholar 

  11. P. Lang, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, J. Alloys Compd. 612, 443 (2014). https://doi.org/10.1016/j.jallcom.2014.05.191

    Article  Google Scholar 

  12. S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer, Acta Mater. 60, 5545 (2012). https://doi.org/10.1016/j.actamat.2012.06.061

    Article  Google Scholar 

  13. H. Zhong, P. Rometsch, Y. Estrin, Trans. Nonferrous Met. Soc. China 24, 2174 (2014). https://doi.org/10.1016/s1003-6326(14)63329-x

    Article  Google Scholar 

  14. Y. Mahton, V. Jha, P. Saha, Int. J. Met. (2023). https://doi.org/10.1007/s40962-023-01030-9

    Article  Google Scholar 

  15. I. Sevim, S. Sahin, H. Cug, E. Cevik, F. Hayat, M. Karali, Strength Mater. 46, 190 (2014). https://doi.org/10.1007/s11223-014-9535-9

    Article  Google Scholar 

  16. C.Y. Cui, T.Y. Wan, Y.X. Shu, S. Meng, X.G. Cui, J.Z. Lu, Y.F. Lu, J. Alloys Compd. 803, 1112 (2019). https://doi.org/10.1016/j.jallcom.2019.06.347

    Article  Google Scholar 

  17. B.S. Gong, Z.J. Zhang, Z. Qu, J.P. Hou, H.J. Yang, X.H. Shao, Z.F. Zhang, Int. J. Fatigue 156, 106682 (2022). https://doi.org/10.1016/j.ijfatigue.2021.106682

    Article  Google Scholar 

  18. S.K. Kairy, P.A. Rometsch, K. Diao, J.F. Nie, C.H.J. Davies, N. Birbilis, Electrochim. Acta 190, 92 (2015). https://doi.org/10.1016/j.electacta.2015.12.098

    Article  Google Scholar 

  19. A.P. Sekhar, A. Samaddar, A.B. Mandal, D. Das, Met. Mater. Int. 27, 5059 (2021). https://doi.org/10.1007/s12540-020-00843-1

    Article  Google Scholar 

  20. D.S. Kharitonov, I.B. Dobryden, B. Sefer, I.M. Zharskii, P.M. Claesson, I.I. Kurilo, Prot. Met. Phys. Chem. Surf. 54, 291(2018). https://doi.org/10.1134/s2070205118020077

    Article  Google Scholar 

  21. S.K. Kairy, P.A. Rometsch, C.H.J. Davies, N. Birbilis, Corrosion  71, 1304 (2015). https://doi.org/10.5006/1840

    Article  Google Scholar 

  22. W.M. Tian, S.M. Li, B. Wang, J.H. Liu, M. Yu, Corros. Sci. 113, 1 (2016). https://doi.org/10.1016/j.corsci.2016.09.013

    Article  Google Scholar 

  23. H. Maeng, Y. Choi, S.-J. Lee, Met. Sci. Heat Treat. 61, 455 (2019). https://doi.org/10.1007/s11041-019-00445-8

    Article  Google Scholar 

  24. Q.M. Guan, J. Sun, W.Y. Wang, J.F. Gao, C.X. Zou, J. Wang, B. Tang, H.C. Kou, H.S. Wang, J.Y. Hou, Materials 12, 1081 (2019). https://doi.org/10.3390/ma12071081

    Article  Google Scholar 

  25. S.L. Haridon-Quaireau, M. Laot, K. Colas, B. Kapusta, S. Delpech, D. Gosset, J. Alloys Compd. 833, 155146 (2020). https://doi.org/10.1016/j.jallcom.2020.155146

    Article  Google Scholar 

  26. M.Y. Chen, Y.L. Deng, J.G. Tang, S.T. Fan, X.M. Zhang, Mater. Charact. 148, 259 (2019). https://doi.org/10.1016/j.matchar.2018.12.024

    Article  Google Scholar 

  27. R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez, Corros. Sci. 73, 342 (2013). https://doi.org/10.1016/j.corsci.2013.04.023

    Article  Google Scholar 

  28. X.X. Zhang, X.R. Zhou, T. Hashimoto, B. Liu, C. Luo, Z.H. Sun, Z.H. Tang, F. Lu, Y.L. Ma, Corros. Sci. 132, 1 (2018). https://doi.org/10.1016/j.corsci.2017.12.010

    Article  Google Scholar 

  29. Y.P. Zhang, Y. Lv, E. Liu, G.Y. Cai, Q.L. Pan, B. Liu, Z.H. Dong, X.X. Zhang, Mater. Charact. 191, 112169 (2022). https://doi.org/10.1016/j.matchar.2022.112169

    Article  Google Scholar 

  30. R.A. Siddiqui, H.A. Abdullah, K.R. Al-Belushi, J. Mater. Process. Technol. 102, 234 (2000). https://doi.org/10.1016/s0924-0136(99)00476-8

    Article  Google Scholar 

  31. S.K. Panigrahi, R. Jayaganthan, V. Chawla, Mater. Lett. 62, 2626 (2008). https://doi.org/10.1016/j.matlet.2008.01.003

    Article  Google Scholar 

  32. K. Teichmann, C.D. Marioara, S.J. Andersen, K. Marthinsen, Mater. Charact. 75, 1 (2013). https://doi.org/10.1016/j.matchar.2012.10.003

    Article  Google Scholar 

  33. S. Nandy, M.A. Bakkar, D. Das, Mater. Today Proc. 2, 1234 (2015). https://doi.org/10.1016/j.matpr.2015.07.037

    Article  Google Scholar 

  34. A.P. Sekhar, A.B. Mandal, D. Das, J. Mater. Res. Technol. 9, 1005 (2020). https://doi.org/10.1016/j.jmrt.2019.11.040

    Article  Google Scholar 

  35. X.H. Xu, Y.L. Deng, S.Q. Chi, X.B. Guo, J. Mater. Res. Technol. 9, 230 (2020). https://doi.org/10.1016/j.jmrt.2019.10.050

    Article  Google Scholar 

  36. Y. Li, D. Bai, D.X. Wang, C.J. Liu, S.B. Yang, G.Z. Huang, Mater. Today Commun. 36, 106583 (2023). https://doi.org/10.1016/j.mtcomm.2023.106583

    Article  Google Scholar 

  37. D. Zander, C. Schnatterer, C. Altenbach, V. Chaineux, Mater. Des. 83, 49 (2015). https://doi.org/10.1016/j.matdes.2015.05.079

    Article  Google Scholar 

  38. X.X. Zhang, X.R. Zhou, T. Hashimoto, B. Liu, Mater. Charact. 130, 230 (2017). https://doi.org/10.1016/j.matchar.2017.06.022

    Article  Google Scholar 

  39. M.X. Liang, R. Melchers, I. Chaves, Corros. Sci. 140, 286 (2018). https://doi.org/10.1016/j.corsci.2018.05.036

    Article  Google Scholar 

  40. S.K. Kairy, N. Birbilis, Corrosion 76, 464 (2020). https://doi.org/10.5006/3457

    Article  Google Scholar 

  41. F.L. Zeng, Z.L. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, Z.Q. Zheng, Trans. Nonferrous Met. Soc. China 21, 2559 (2011). https://doi.org/10.1016/s1003-6326(11)61092-3

    Article  Google Scholar 

  42. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Electrochim. Acta 52, 7651 (2007). https://doi.org/10.1016/j.electacta.2006.12.072

    Article  Google Scholar 

  43. R. Ambat, E.S. Dwarakadasa, Corros. Sci. 33, 681 (1992). https://doi.org/10.1016/0010-938x(92)90102-9

    Article  Google Scholar 

  44. M.C. Reboul, T.J. Warner, H. Mayer, B. Barouk, Corros. Rev. 15, 471 (1997). https://doi.org/10.1515/corrrev.1997.15.3-4.471

    Article  Google Scholar 

  45. D. Cicolin, M. Trueba, S.P. Trasatti, Electrochim. Acta 124, 27 (2014). https://doi.org/10.1016/j.electacta.2013.09.003

    Article  Google Scholar 

  46. K.A. Yasakau, M.L. Zheludkevich, M.G.S. Ferreira, in Intermetallic Matrix Composites: Properties and Applications, ed. by R. Mitra (Woodhead Publishing, Cambridge, 2018). pp. 425-462. https://doi.org/10.1016/B978-0-85709-346-2.00015-7

    Article  Google Scholar 

  47. G.M. Treacy, C.B. Breslin, Electrochim. Acta 43, 1715 (1998). https://doi.org/10.1016/s0013-4686(97)00305-8

    Article  Google Scholar 

  48. U. Donatus, G.E. Thompson, J.A. Omotoyinbo, K.K. Alaneme, S. Aribo, O.G. Agbabiaka, Trans. Nonferrous Met. Soc. China 27, 55 (2017). https://doi.org/10.1016/s1003-6326(17)60006-2

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Natural Science Foundation of Sichuan Province of China (2022NSFSC0325), Application foundation project of Sichuan Science and Technology department (No. 2021YJ0346), State Key Laboratory of Long-life High-Temperature Materials (DTCC28EE200795) and Sichuan Provincial Engineering Research Center of Advanced Materials Manufacturing Technology for Shale Gas High-efficient Exploitation (2022SCYYQKCCL008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Liu, L., Sui, Z. et al. Effect of Aging Temperature on Pitting Corrosion of AA6063 Aluminum Alloy. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01587-4

Keywords

Navigation