Skip to main content

Advertisement

Log in

A computational approach to designing ductile Nb-Ti-Cr-Al solid-solution alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article describes a new computation-based approach for designing ductile Nb-Ti-Cr-Al solid-solution alloys. The proposed approach is based on computation of the surface energy and the Peierls-Nabarro (P-N) barrier energy as a function of alloy composition. The surface energy is used as a measure of the resistance to cleavage fracture, while the P-N barrier energy is used as a measure of dislocation mobility. The ratio of the surface energy to the P-N barrier energy is utilized as a material index which can be adjusted by alloying additions. Analytical relations are developed for computing (1) the elastic constants in terms of the d+s electrons per atom in the alloys and (2) the lattice parameter, surface energy, and P-N barrier energy in terms of alloy composition. Design of a ductile solid-solution alloy is achieved by manipulating the number of d+s electrons, through alloying additions, to obtain a high value of the ratio of the surface energy to P-N barrier energy by reducing the misfit energy of the dislocation core. Applications of the methodology to designing binary, ternary, and quaternary Nb-based solid-solution alloys with Ti, Cr, and Al alloying additions are illustrated with promising results, demonstrating that the proposed methodology is a viable approach for alloy design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Anton and D.M. Shah: MRS Symp. Proc., 1990, vol. 194, pp. 175–82.

    Google Scholar 

  2. K.S. Chan: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2518–31.

    CAS  Google Scholar 

  3. D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3007–18.

    CAS  Google Scholar 

  4. K.S. Chan and D.L. Davidson: JOM, 1996, vol. 48 (9), pp. 62–68.

    CAS  Google Scholar 

  5. K.S. Chan, D.L. Davidson, and D.L. Anton: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1797–1808.

    CAS  Google Scholar 

  6. M. Yoshida and T. Takasugi: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 873–76.

    Google Scholar 

  7. D.J. Thoma, F. Chu, P. Peralta, P.G. Kotula, K.C. Chen, and T.E. Mitchell: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 251–59.

    Google Scholar 

  8. K.C. Chen, D.J. Thoma, P.G. Kotula, F. Chu, C.M. Cady, G.T. Gray, P.S. Dunn, D.R. Korzekwa, C. Mercer, and W. Soboyejo: 3rd Pacific Rim Int. Conf. on Advanced Materials and Processing, M.A. Imam, R. DeNale, S. Hanada, Z. Zhong, and D.N. Lee, eds., TMS, Warrendale, PA, 1998, pp. 1431–36.

    Google Scholar 

  9. C.D. Bencher, A. Sakaida, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2027–33.

    CAS  Google Scholar 

  10. J. Shyue, D.-H. Hou, M. Aindow, and H. Fraser: Mater. Sci. Eng. A, 1973, vol. A170, pp. 1–10.

    Google Scholar 

  11. F. Ye, C. Mercer, and W.O. Soboyejo: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2361–74.

    CAS  Google Scholar 

  12. R.M. Nekkanti and D.M. Dimiduk: Mater. Res. Soc. Symp. Proc., 1990, vol. 194, pp. 175–82.

    CAS  Google Scholar 

  13. M.G. Mendiratta and D.M. Dimiduk: Metall. Trans. A, 1993, vol. 24A, pp. 501–04.

    CAS  Google Scholar 

  14. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metall. Trans. A, 1991, vol. 22A, pp. 1573–83.

    CAS  Google Scholar 

  15. J.D. Rigney and J.J. Lewandowski: Metall. Mater Trans. A, 1996, vol. 27A, pp. 3292–3306.

    CAS  Google Scholar 

  16. B.P. Bewlay, H.A. Lipsitt, W.J. Reeder, M.R. Jackson, and J.A. Sutliff: in Processing and Fabrication of Advanced Materials IV, V.A. Ravi, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, PA, 1994, pp. 547–65.

    Google Scholar 

  17. P.R. Subramanian, M.G. Mendiratta, and D.M. Dimiduk: JOM, 1996, vol. 48, pp. 33–38.

    CAS  Google Scholar 

  18. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M.A. Stucke: Mater. Sci. Eng., 1997, vols. A239–A340, pp. 1–13.

    Google Scholar 

  19. M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, and H.A. Lipsitt: JOM, 1996, vol. 48, pp. 39–44.

    CAS  Google Scholar 

  20. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A, 1996, pp. 3801–08.

  21. P.R. Subramanian, M.G. Mendiratta, and D.M. Dimiduk: Mater. Res. Soc. Symp. Proc., 1994, vol. 322, pp. 491–502.

    CAS  Google Scholar 

  22. B.P. Bewlay, M.R. Jackson, W.J. Reeder, and H.A. Lipsitt: Mater. Res. Soc. Symp. Proc., 1995, vol. 364, pp. 943–48.

    CAS  Google Scholar 

  23. K.S. Chan: Mater. Res. Soc. Symp. Proc., 1995, vol. 364, pp. 469–80.

    CAS  Google Scholar 

  24. M.Y. He, F.E. Heredia, D.J. Wissuchek, M.C. Shaw, and A.G. Evans: Acta Metall. Mater., 1993, vol. 41, pp. 1223–28.

    Article  CAS  Google Scholar 

  25. R.T. Begley: in Evolution of Refractory Metals and Alloys, E.N.C. Dalder, T. Grobstein, and C.S. Olsen, eds., TMS, Warrendale, PA, 1994, pp. 29–48.

    Google Scholar 

  26. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 925–39.

    CAS  Google Scholar 

  27. D.L. Davidson and K.S. Chan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2007–18.

    Article  CAS  Google Scholar 

  28. D.L. Davidson, K.S. Chan, L. Loloee, and M.A. Crimp: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1075–84.

    CAS  Google Scholar 

  29. Materials Theory and Modeling, J. Broughton, Paul Bristowe, and J. Newsam, eds., Materials Research Society, Pittsburgh, PA, 1993, vol. 291.

    Google Scholar 

  30. MRS Bulletin, Materials Research Society, Pittsburgh, PA, 1996, vol. 21 (2).

  31. MRS Bulletin, Materials Research Society, Pittsburgh, PA, 2000, vol. 25 (5).

  32. A.P. Sutton, P.D. Godwin, and A.P. Horsfield: MRS Bull., 1996, vol. 21 (2), pp. 42–48.

    CAS  Google Scholar 

  33. D. Farkas: Mater. Sci. Eng., 1998, vol. A249, pp. 249–58.

    CAS  Google Scholar 

  34. F. Chu, M. Šob, R. Siegl, T.E. Mitchell, D.P. Pope, and S.P. Chen: Phil. Mag. B, 1994, vol. 70, pp. 881–92.

    CAS  Google Scholar 

  35. A. Ormeci, F. Chu, J.W. Wills, T.E. Mitchell, R.C. Albers, D.J. Thoma, and S.P. Chen: Phys. Rev. B, 1996, vol. 54 (18), pp. 12753–12762.

    Article  CAS  Google Scholar 

  36. U.V. Waghmare, E. Kaxiras, V.V. Bulatov, and M.S. Duesberry: Modelling Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 493–506.

    Article  CAS  Google Scholar 

  37. R.E. Peierls: Proc. Phys. Soc., 1940, vol. 52, pp. 34–37.

    Article  Google Scholar 

  38. F.R.N. Nabarro: Proc. Phys. Soc., 1947, vol. 59, pp. 236–394.

    Article  Google Scholar 

  39. A.A. Griffith: Phil. Trans. R. Soc., London A, 1920, vol. 221, pp. 163–97.

    Article  Google Scholar 

  40. J.R. Rice and R.M. Thomson: Phil. Mag., 1974, vol. 29, pp. 73–97.

    CAS  Google Scholar 

  41. J.R. Rice: J. Mech. Phys. Solids, 1992, vol. 40, pp. 239–71.

    Article  CAS  Google Scholar 

  42. V. Shastry and P.M. Anderson: Phil. Mag. A, 1997, vol. 75, pp. 771–89.

    CAS  Google Scholar 

  43. T.C. Wang: Phil. Mag. A, 1998, vol. 77, pp. 31–53.

    Article  CAS  Google Scholar 

  44. D.M. Lipkin and G.E. Beltz: Acta Mater., 1996, vol. 44, pp. 1287–91.

    Article  CAS  Google Scholar 

  45. G.E. Beltz, J.R. Rice, C.F. Shih, and L. Xia: Acta Mater., 1996, vol. 44, pp. 3943–54.

    Article  CAS  Google Scholar 

  46. W. Zielinski, M.J. Lii, and W.W. Gerberich: Acta Metall. Mater., 1992, vol. 40, pp. 2861–71.

    Article  CAS  Google Scholar 

  47. W.W. Gerberich, H. Huang, W. Zielinski, and P.G. Marsh: Metall. Trans. A, 1993, vol. 24A, pp. 535–43.

    CAS  Google Scholar 

  48. Y. Katz, R.R. Keller, H. Huang, and W.W. Gerberich: Metall. Trans. A, 1993, vol. 24A, pp. 343–50.

    CAS  Google Scholar 

  49. P.B. Hirsch and S.G. Roberts: Phil. Mag. A, 1991, vol. 64, pp. 55–80.

    CAS  Google Scholar 

  50. S.G. Roberts and A.S. Booth: Acta Mater., 1997, vol. 45, pp. 1045–53.

    Article  Google Scholar 

  51. P.B. Hirsch and S.G. Roberts: Proc. George R. Irwin Symp., Kwai S. Chan, ed., TMS, Warrendale, PA, 1997, pp. 137–45.

    Google Scholar 

  52. J.W. Christian and V. Vitek: Rep. Progs. Phys., 1970, vol. 33, pp. 307–411.

    Article  Google Scholar 

  53. D.L. Davidson: Mater. Sci. Eng., 2000, vol. A293, pp. 281–91.

    CAS  Google Scholar 

  54. D.L. Davidson and R.E. Beissner: “Computation of the Unstable Stacking Energy for Transition Element Alloys,” SwRI Internal Research Report, SwRI, San Antonio, TX, 1997.

    Google Scholar 

  55. R.E. Beissner, D.L. Davidson, and K.S. Chan: Southwest Research Institute, San Antonio, TX, unpublished work, 2000.

  56. J.N. Wang: Mater. Sci. Eng. A, 1996, vol. A206, pp. 259–69.

    CAS  Google Scholar 

  57. J.N. Wang: Acta Mater., 1996, vol. 44, pp. 1541–46.

    Article  CAS  Google Scholar 

  58. A.J. Foreman, M.A. Jaswon, and J.K. Wood: Proc. Phys. Soc., 1951, vol. 64A, pp. 156–63.

    Google Scholar 

  59. A.J.E. Foreman: Acta Metall., 1955, vol. 3, pp. 322–30.

    Article  CAS  Google Scholar 

  60. H.B. Huntington: Proc. Phys. Soc., 1955, vol. 68B, pp. 1043–48.

    Google Scholar 

  61. K. Ohsawa, H. Koizumi, H.O.K. Kirchner, and T. Suzuki: Phil. Mag. A, 1994, vol. 69A, pp. 171–81.

    Google Scholar 

  62. J.P. Hirth and J. Lothe: Theory of Dislocation, 2nd ed., John Wiley & Sons, New York, NY, 1982, pp. 217–42.

    Google Scholar 

  63. M.S. Duesbery and V. Vitek: Acta Mater., 1998, vol. 46, pp. 1482–92.

    Article  Google Scholar 

  64. A.K. Head: Phys. Status, 1964, vol. 6, pp. 461–65.

    Google Scholar 

  65. S. Diplas, G. Shao, S.A. Morton, P. Tsakiropoulos, and J.F. Watts: Intermetallics, 1999, vol. 7, pp. 937–46.

    Article  CAS  Google Scholar 

  66. E.S. Fisher and D. Dever: Acta Metall., 1970, vol. 17, pp. 265–69.

    Google Scholar 

  67. W.C. Hubbell and F.R. Brotzen: J. Appl. Phys., 1972, vol. 43, pp. 3306–4413.

    Article  CAS  Google Scholar 

  68. D.L. Davidson and F.R. Brotzen: J. Appl. Phys., 1968, vol. 12, pp. 5768–75.

    Article  Google Scholar 

  69. C.L. Reynolds, P.R. Couchman, and F.E. Karasz: Phil. Mag., 1976, vol. 34, pp. 659–61.

    CAS  Google Scholar 

  70. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ASM, Materials Park, OH, 1990.

    Google Scholar 

  71. D.J. Thoma: Ph.D. Dissertation, University of Wisconsin, Madison, WI, 1992, available from university microfilms.

    Google Scholar 

  72. M.R. Jackson and K.D. Jones: in Refractory Metals: Extraction, Processing and Applications, K. Nona, C. Kiddell, D.R. Sadoway, and R.G. Bautista, eds., TMS, Warrendale, PA, 1990, pp. 311–19.

    Google Scholar 

  73. K.D. Jones: Master’s Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1990.

    Google Scholar 

  74. K.D. Jones, M.R. Jackson, M. Larsen, E.L. Hall, and D.A. Woodford: in Refractory Metals: Extraction, Processing and Applications, K.C. Liddell, D.R. Sadoway, and R.G. Bautista, eds., TMS, Warrendale, PA, 1990, pp. 321–34.

    Google Scholar 

  75. T.J. Jewett, J.C. Lin, N.R. Bonda, L.E. Seltzman, K.C. Hsien, and Y.A. Chan: Mater. Res. Symp. Proc., 1989, vol. 133, pp. 69–74.

    Google Scholar 

  76. K.S. Chan: Mat. Sci. Eng., 2001, in press.

  77. V. Vitek: Phil. Mag., 1968, vol. 18, p. 773.

    CAS  Google Scholar 

  78. V. Vitek: Cryst. Lattice Def., 1975, vol. 5, p. 1.

    Google Scholar 

  79. R. Von Mises and Z. Angew: Math. Mech., 1928, vol. 8 (3), p. 161.

    Google Scholar 

  80. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 579–85.

    Article  CAS  Google Scholar 

  81. D.L. Davidson, P.J. Maziasz, and J.W. Jones: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1023–27.

    CAS  Google Scholar 

  82. J.W. Christian: Metall. Trans. A, 1983, vol. 14A, pp. 1237–56.

    CAS  Google Scholar 

  83. D.A. Hughes: in Evolution of Refractory Metals and Alloys, E.N.C. Dalder, T. Grobstein, and C.S. Olsen, eds., TMS, Warrendale, PA, 1994, pp. 219–35.

    Google Scholar 

  84. M.S. Duesbery and W. Xu: Scripta Mater., 1998, vol. 39 (3), pp. 283–87.

    Article  Google Scholar 

  85. E. Passa, G. Shao, and P. Tsakiropoulos: Phil. Mag. A, 1997, vol. 75 (3), pp. 637–55.

    CAS  Google Scholar 

  86. B.S. Hickman: Trans. AIME, 1969, vol. 245, pp. 1329–36.

    CAS  Google Scholar 

  87. R. Wheeler, S. Perungulam, S. Banerjee, D.H. Hou, R.J. Grylls, and H.L. Fraser: in Structural Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 851–58.

    Google Scholar 

  88. R.L. Fleischer and R.J. Zabala: Metall. Trans. A, 1990, vol. 21A, pp. 2149–54.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S. A computational approach to designing ductile Nb-Ti-Cr-Al solid-solution alloys. Metall Mater Trans A 32, 2475–2487 (2001). https://doi.org/10.1007/s11661-001-0037-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0037-6

Keywords

Navigation