Skip to main content
Log in

The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of intermetallic inclusions on the fatigue crack initiation and growth in 2080 Al alloy and 2080/SiC p composites was investigated. Using surface replication, it was determined that, in the high-cycle fatigue region, life is dominated by the initiation process. It was also determined that the majority of initiation sites were associated with intermetallic inclusions. While 2080/SiC/20 p showed a definitive relationship between inclusion size and fatigue life, i.e., a higher inclusion size resulted in lower fatigue life, there was no correlation in 2080/SiC/30 p . This was attributed to more of the load being shared by the higher volume fraction of SiC particles and smaller average inclusion sizes in the latter composite. A conceptual model is proposed that accounts for these observations and qualitatively shows the effect of reinforcement on stress enhancement in near-surface inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Reimann and A.W. Brisbane: Eng. Fract. Mech., 1973, vol. 5, p. 67.

    Article  CAS  Google Scholar 

  2. K. Nishioka: Mater. Testing, 1957, vol. 6, pp. 382–85.

    Google Scholar 

  3. R.M. Pelloux and R.E. Stoltz: Proc. 4th Int. Conf. on the Strength of Metals and Alloys, 1976, p. 1023.

  4. J.H. Mulherin and H. Rosenthal: Metall. Trans., 1971, vol. 2, pp. 427–32.

    Article  CAS  Google Scholar 

  5. N. Chawla, C. Andres, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2843–54.

    Article  CAS  Google Scholar 

  6. U. Habel, C.M. Christenson, J.W. Jones, and J.E. Allison: Proc. 10th Int. Conf. Composite Materials, A. Poursartip and K. Street, eds., Woodhead Publishing Ltd., Cambridge, United Kingdom, 1995, vol. 2, pp. 597–604.

    Google Scholar 

  7. A.R. Vaidya and J.J. Lewandowski: Mater. Sci. Eng. A, 1996, vol. A220, pp. 85–92.

    Article  Google Scholar 

  8. J. Hall, J.W. Jones, and A. Sachdev: Mater. Sci. Eng. A, 1994, vol. A183, pp. 69–80.

    Article  CAS  Google Scholar 

  9. J.E. Allison and J.W. Jones: in Fundamentals of Metal Matrix Composities, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, pp. 269–94.

    Google Scholar 

  10. J.J. Bonnen, J.E. Allison, and J.W. Jones: Metall. Trans. A, 1991, vol. 22A, pp. 1007–19.

    CAS  Google Scholar 

  11. C. Li and F. Ellyin: Mater. Sci. Eng. A 1996, vol. A214, pp. 115–21.

    Article  Google Scholar 

  12. E.Y. Chen, L. Lawson, and M. Meshii: Mater. Sci. Eng. A, 1995, vol. A200, p. 192.

    Article  Google Scholar 

  13. J.K. Shang and R.O. Ritchie: in Metal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, Boston, MA, 1991, p. 255.

    Google Scholar 

  14. D.A. Lukasak and D.A. Koss: Composites, 1993, vol. 24, p. 262.

    Article  CAS  Google Scholar 

  15. D.A. Lukasek: Ph.D. Dissertation, Pennsylvania State University, University Park, PA, 1993.

  16. J.L. Cook and W.R. Mohn: Engineered Materials Handbook, ASM INTERNATIONAL, Materials Park, OH, 1987, vol. 1, p. 896.

    Google Scholar 

  17. G.J. Hildeman and M.J. Koczak: in Treatise on Materials Science and Technology, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Boston, MA, 1989, vol. 31, p. 323.

    Google Scholar 

  18. H.J. Rack: in Processing and Properties of Powder Metallurgy Composites, P. Kumar, K. Vedula, and A. Ritter, eds., TMS, Warrendale, PA, 1988, p. 155.

    Google Scholar 

  19. P.E. Krajewski, J.E. Allison, and J.W. Jones: Metall. Trans. A, 1993, vol. 24A, p. 2731.

    CAS  Google Scholar 

  20. M.H. Swain: in Small Crack Test Methods, ASTM STP 1149, J.M. Larsen and J.E. Allison, eds., ASTM, Philadelphia, PA, 1992, pp. 34–56.

    Google Scholar 

  21. Z. Mei and J.W. Morris, Jr.: Int. J. Fract., 1993, vol. 64, pp. 43–61.

    Article  Google Scholar 

  22. M. Levin and B. Karlsson: Int. J. Fatigue, 1993, vol. 15, p. 377.

    Article  CAS  Google Scholar 

  23. L.C. Davis and J.E. Allison: Metall. Trans. A, 1993, vol. 24A pp. 2487–96.

    CAS  Google Scholar 

  24. J.D. Eshelby: Proc. R. Soc., 1957, vol. A241, p. 376.

    Article  Google Scholar 

  25. C.D. Liu, M.N. Bassim, and S.S. Lawrence: Eng. Fract. Mech., 1995, vol. 50, pp. 301–07.

    Article  Google Scholar 

  26. Y. Murakami, S. Kodama, and S. Konuma: Int. J. Fatigue, 1989, vol. 11, pp. 291–98.

    Article  CAS  Google Scholar 

  27. Y. Murakami, S. Kodama, and S. Konuma: Int. J. Fatigue, 1989, vol. 11, p. 299.

    Article  CAS  Google Scholar 

  28. J. Grison and L. Remy: Eng. Fract. Mech., 1997, vol. 57, pp. 41–55.

    Article  Google Scholar 

  29. R. Chang, W.L. Morris, and O. Buck: Scripta Metall., 1979, vol. 13, pp. 191–94.

    Article  Google Scholar 

  30. W.L. Morris and M.R. James: Metall. Trans., 1980, vol. 11A, pp. 850–51.

    Google Scholar 

  31. K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23.

    CAS  Google Scholar 

  32. W.L. Morris, O. Buck, and H.L. Marcus: Metall. Trans. A, 1976, vol. 7A, pp. 1161–65.

    CAS  Google Scholar 

  33. Y.C. Kung and M.E. Fine: Metall. Trans. A, 1979, vol. 10A, pp. 603–10.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

N. CHAWLA, formerly Research Fellow, Department of Materials Science and Engineering, University of Michigan

C. ANDES is former Research Fellow, Department of Materials Science and Engineering, University of Michigan.

This article is based on a presentation made in the Symposium “Mechanisms and Mechanics of Composites Fracture” held October 11–15, 1998, at the TMS Fall Meeting in Rosemont, Illinois, under the auspices of the TMS-SMD/ASM-MSCTS Composite Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, N., Andres, C., Davis, L.C. et al. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Metall Mater Trans A 31, 951–957 (2000). https://doi.org/10.1007/s11661-000-1013-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-1013-2

Keywords

Navigation