Skip to main content
Log in

The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of matrix microstructure on the stress-controlled fatigue behavior of a 2080 Al alloy reinforced with 30 pct SiC particles was investigated. A thermomechanical heat treatment (T8) produced a fine and homogeneous distribution of S′ precipitates, while a thermal heat treatment (T6) resulted in coarser and inhomogeneously distributed S′ precipitates. The cyclic and monotonic strength, as well as the cyclic stress-strain response, were found to be significantly affected by the microstructure of the matrix. Because of the finer and more-closely spaced precipitates, the composite given the T8 treatment exhibited higher yield strengths than the T6 materials. Despite its lower yield strength, the T6 matrix composite exhibited higher fatigue resistance than the T8 matrix composite. The cyclic deformation behavior of the composites is compared to monotonic deformation behavior and is explained in terms of microstructural instabilities that cause cyclic hardening or softening. The effect of precipitate spacing and size has a significant effect on fatigue behavior and is discussed. The interactive role of matrix strength and SiC reinforcement on stress within “rogue” inclusions was quantified using a finite-element analysis (FEA) unit-cell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chawla, C. Andres, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 1998, vol. 29A, p. 2843.

    Article  CAS  Google Scholar 

  2. J.E. Allison and J.W. Jones: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, London, 1993, pp. 269–94.

    Google Scholar 

  3. S.F. Corbin and D.S. Wilkinson: Acta Metall. Mater., 1994, vol. 42, p. 1329.

    Article  CAS  Google Scholar 

  4. J.J. Lewandowski, C. Liu, and W.H. Hunt: Mater. Sci. Eng., 1989, vol. A107, p. 241.

    CAS  Google Scholar 

  5. M. Manoharan and J.J. Lewandowski: Mater. Sci. Eng., 1992, vol. A150, p. 179.

    CAS  Google Scholar 

  6. C. Li and F. Ellyin: Mater. Sci. Eng. A, 1996, vol. A214, p. 115.

    CAS  Google Scholar 

  7. M. Levin and B. Karlsson: Int. J. Fatigue, 1993, vol. 15, p. 377.

    Article  CAS  Google Scholar 

  8. E.Y. Chen, L. Lawson, and M. Meshii: Mater. Sci. Eng. A, 1995, vol. A200, p. 192.

    CAS  Google Scholar 

  9. R.M. Pelloux and R.E. Stoltz: Proc. 4th Int. Conf. on the Strength of Metals and Alloys, Nancy, France, 1976, pp. 1023–26.

  10. S. Suresh and K.K. Chawla: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, London, 1993, pp. 119–36.

    Google Scholar 

  11. K.L. Dyos, B.A. Shollock, and H.M. Flower: Proc. 10th Conf. on Composite Materials, K.N. Street and A. Pousartip, eds., Whistler, BC, Canada, Woodhead Pub. Ltd., Cambridge, U.K., 1995, vol. 11, pp. 441–48.

    Google Scholar 

  12. S. Sundarajan, R. Mahadevan, and E.S. Dwarakadasa: Proc. 10th Conf. on Composite Materials, K.N. Street and A. Pousartip, eds., Whistler, BC, Canada, Woodhead Pub. Ltd., Cambridge, U.K., 1995, vol. 11, pp. 831–38.

    Google Scholar 

  13. M. Vogelsang, R.J. Arsenault, and R.M. Fisher: Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  14. M.A.M. Bourke, J.A. Goldstone, M.G. Stout, A.C. Lawson, and J.E. Allison: in Residual Stresses in Composites: Measurements, Modeling and Thermo-Mechanical Modeling, E.V. Barrera and I. Dutta, eds., TMS, Warrendale, PA, 1993.

    Google Scholar 

  15. L.C. Davis and JE. Allison: Metall. Trans., A, 1993, vol. 24A, pp. 2487–96.

    CAS  Google Scholar 

  16. J. Llorca, A. Needleman, and S. Suresh: Acta Metall. Mater., 1991, vol. 39, pp. 2317–35.

    Article  CAS  Google Scholar 

  17. E.A. Starke and G. Luetjering: in Fatigue and Microstructure, J.T. Stayley and E.A. Starke, eds., ASM, Materials Park, OH, 1979, pp. 205–43.

    Google Scholar 

  18. F. Ostermann: Metall. Trans., 1971, vol. 2, pp. 2897–2902.

    CAS  Google Scholar 

  19. P.E. Krajewski, J.E. Allison, and J.W. Jones: Metall. Trans. A, 1993, vol. 24A, p. 2731.

    CAS  Google Scholar 

  20. R.N. Wilson and P.G. Partridge: Acta Metall., 1965, vol. 13, pp. 1321–27.

    Article  CAS  Google Scholar 

  21. N. Chawla, C. Andres, L.C. Davis, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, in press.

  22. I.J. Polmear: Light Alloys, Edward Arnold, London, 1989, p. 32.

    Google Scholar 

  23. H. Mughrabi: Mater. Sci. Eng., 1978, vol. 33, p. 207.

    Article  CAS  Google Scholar 

  24. A. Abel: Mater. Sci. Eng., 1978, vol. 36, p. 117.

    Article  CAS  Google Scholar 

  25. D.J. Morrison, J.W. Jones, and G.S. Was: Scripta Metall. Mater., 1990, vol. 24, p. 2309.

    Article  CAS  Google Scholar 

  26. S.J Harris, B. Noble, K. Dinsdale, and M. Pridham: in Aluminum Alloys—Their Physical and Mechanical Properties, E.A. Starke, Jr. and T.H. Sanders, eds., 1986, pp. 755–62.

  27. E.A. Starke, Jr., T.H. Sanders, and I.G. Palmer: J. Met., 1981, vol. 8, p. 24.

    Google Scholar 

  28. P.J. Gregson and H.M. Flower: Acta Metall., 1985, vol. 33, p. 527.

    Article  CAS  Google Scholar 

  29. V.C. Nardone and K.M. Prewo: Scripta Metall., 1989, vol. 23, p. 291.

    Article  CAS  Google Scholar 

  30. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, p. 175.

    Article  CAS  Google Scholar 

  31. N. Hansen: Acta Metall., 1977, vol. 25, p. 863.

    Article  CAS  Google Scholar 

  32. J.E. Allison and J.W. Jones: in Fatigue 96, EMAS/HEP, New York, NY, 1996.

    Google Scholar 

  33. K. Boyapati and I.J. Polmear: Fat. Eng. Mater. Struct., 1979, vol. 2, pp. 23–33.

    Article  CAS  Google Scholar 

  34. C. Calabrese and C. Laird: Mater. Sci. Eng., 1974 pp. 141–57.

  35. C. Calabrese and C. Laird: Mater. Sci. Eng., 1974, pp. 159–74.

  36. J.C. Grosskreutz: Metall. Trans. A, 1972, vol. 3A, pp. 1255–62.

    Google Scholar 

  37. B.A. Parker: in Treatise on Materials Science and Technology, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Boston, MA, 1989, vol. 31, p. 539.

    Google Scholar 

  38. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Prentice-Hall, Upper Saddle River, NJ, 1999, p. 493.

    Google Scholar 

  39. Y.-L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1994, vol. 42, pp. 77–97.

    Article  CAS  Google Scholar 

  40. Y.-L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1995, vol. 43, pp. 1701–22.

    Article  CAS  Google Scholar 

  41. R. Chang, W.L. Morris, and O. Buck: Scripta Metall., 1979, vol. 13, p. 191.

    Article  Google Scholar 

  42. K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23.

    CAS  Google Scholar 

  43. W.L. Morris and M.N. James: Metall. Trans., A, 1980, vol. 11A, pp. 850–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, N., Habel, U., Shen, Y.L. et al. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Metall Mater Trans A 31, 531–540 (2000). https://doi.org/10.1007/s11661-000-0288-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0288-7

Keywords

Navigation