Skip to main content
Log in

Elevated temperature oxidation of laser surface engineered composite boride coating on steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of long duration exposure of laser surface engineered composite boride coating on plain carbon steel in air at high temperatures were investigated in this study. Exposures at 600 °C, 800 °C, and 1000 °C for 10, 30, and 50 hours of composite-TiB2 coated samples were conducted to study oxide scale growth and morphology. Kinetics of oxidation of the coating during elevated temperature exposures were separately studied using the thermogravimetric analysis (TGA) technique. The oxidation rate for all samples was parabolic in nature and the oxidation kinetic rate constant, K, increased with increasing temperature of exposure. Activation energy, Q for composite TiB2 coating was found to be 205 kJ/mol. A thick (>35 µm) oxide layer formed for all duration of exposure at temperatures ≥800 °C. In case of 1000 °C exposure, a very thick (>150 µm) oxide layer was formed, which was separated from the substrate. X-ray diffractometry analysis revealed the complex nonstoichiometric nature of the oxides of type Ti a O b , Fe m O n , and Fe x Ti y O z . Profilometric measurements indicated an increase in the surface roughness of the oxide layer with an increase in temperature of exposure. These physical observations indicated that the nature and morphology of the oxides formed at various temperatures and duration of exposure are complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Cutler: Engineering Materials Handbook: Ceramic and Glasses, ASM INTERNATIONAL, Materials Park, Ott, 1991, vol. 4, pp. 787–803.

    Google Scholar 

  2. A. Agarwal and N.B. Dahotre: in Elevated Temperature Coatings: Science and Technology III, J.M. Hampikian and N.B. Dahotre, eds., TMS, Warrendale, PA, 1999, Annual TMS Meeting, San Diego, CA, 1999, pp. 273–84.

    Google Scholar 

  3. A. Agarwal and N.B. Dahotre: Mater. Characterization, 1999, vol. 42 (1), pp. 31–44.

    Article  CAS  Google Scholar 

  4. A. Agarwal and N.B. Dahotre: Lasers Eng., 1999, in press.

  5. A. Munster: Z. Electrochem., 1959, vol. 63, p. 807.

    CAS  Google Scholar 

  6. M.G. Barandika, J.J. Echeberria, J.M. Sanchez, and F. Castro: J. Mater. Chem., 1998, vol. 8 (8), pp. 1851–57.

    Article  CAS  Google Scholar 

  7. R.J. Irving and I.G. Worsley: J. Less-Common Met. 1968, vol. 16, pp. 103–2.

    Article  CAS  Google Scholar 

  8. V.B. Voitovich, V.A. Lavrenko, and V.M. Adejev: Oxid. Met., 1994, vol. 42 (1–2), pp. 145–61.

    CAS  Google Scholar 

  9. A.N. Pilyankevich, S.V. Papyan, and E.S. Lugovskaya: Poroshkovaya Metallurgiya, 1982, vol. 7 (235), pp. 59–63.

    Google Scholar 

  10. K.L. Choy and B. Derby: J. Mater. Sci., 1994, vol. 29, pp. 3774–80.

    Article  CAS  Google Scholar 

  11. K. Billehaug and H. Oye: Aluminum Verlag, 1980, vol. 56 (100), pp. 642–51.

    CAS  Google Scholar 

  12. A. Agarwal and N.B. Dahotre: Surf. Coating & Technol., 1998, vol. 106, pp. 242–50.

    Article  CAS  Google Scholar 

  13. A. Agarwal, N.B. Dahotre, and T.S. Sudarshan: Surf. Eng., 1999, vol. 15 (1), pp. 27–32.

    Article  CAS  Google Scholar 

  14. N.B. Dahotre and A. Agarwal: JOM, 1999, vol. 51 (4), pp. 19–21.

    CAS  Google Scholar 

  15. J. Mazumder: in Metallurgical and Ceramic Protective Coatings, Kurt H. Stern, ed., Chapman and Hall, London, 1996, pp. 74–111.

    Google Scholar 

  16. K. Komvopoulos and K. Nagarathnam: J. Eng. Mater. Technol., 1990, vol. 112, pp. 131–43.

    CAS  Google Scholar 

  17. A. Agarwal and N.B. Dahotre: Int. J. Refract. Mater. Hard Met., 1999, vol. 17 (4), pp. 283–93.

    Article  CAS  Google Scholar 

  18. A. Agarwal, N.B. Dahotre, and L.F. Allard: Pract. Metallogr., 1999, vol. 36 (3), pp. 250–63.

    CAS  Google Scholar 

  19. J.T.M. De Hosson and M. Van Den Burg: Mater. Manufacturing Processes, 1995, vol. 10 (6), pp. 1285–94.

    Google Scholar 

  20. A. Munster and G. Schlamp: Z. Phys. Chem., 1960, vol. 25, p. 116.

    CAS  Google Scholar 

  21. T. Moeller: Inorganic Chemistry, John Wiley & Sons, New York, NY, 1972, pp. 752–63.

    Google Scholar 

  22. M.G. Fontana: Corrosion Engineering, McGraw-Hill, Inc., New York, NY, 1986, pp. 505–41.

    Google Scholar 

  23. N. Birks and G.H. Meier: Introduction to High Temperature Oxidation of Metals, Edward Arnold Ltd., London, 1983, pp. 91–130.

    Google Scholar 

  24. A. Agarwal: Ph.D. Dissertation University of Tennessee, Knoxville, November 1999.

    Google Scholar 

  25. G.V. Samsonov: The Oxide Handbook, Plenum Press, New York, NY, 1973, pp. 348–60.

    Google Scholar 

  26. F. Gesmundo: Mater. Sci. Forum, 1997, vols. 251–254, pp. 3–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, A., Katipelli, L.R. & Dahotre, N.B. Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Metall Mater Trans A 31, 461–473 (2000). https://doi.org/10.1007/s11661-000-0282-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0282-0

Keywords

Navigation