Skip to main content
Log in

Surface Treatment of S355JR Carbon Steel Surfaces with ZrB2 Nanocrystals by CO2 Laser

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To improve mechanical properties of S2355JR carbon steel, pre-synthesized ZrB2 nanocrystals were used to coat the metal surface by laser cladding using 2000 W CO2 laser. ZrB2 nanocrystals were synthesized by mechanochemical process. The effect of laser power on the coating layers was examined for optimizing the most effective coating conditions. Microstructural studies were carried out using optical microscope, scanning electron microscope and X-ray diffraction to analyze phase structures of the coated layers. Mechanical characteristics of the laser coated layers were evaluated by studying microhardness, wear and scratch resistance properties. Maximum hardness of the coated layers was observed while cladding with 75 and 125 W laser powers, when other processing parameters and conditions were kept at optimum levels. EDS analysis of these laser cladded layers indicated the formation of complex boro-nitrides, nitrides and carbides of Zr and Fe that contributed to vast increase in hardness of the laser-clad coating on S2355JR steel. Depending upon the laser powers used, the thickness of the coated layers was found to be in the range of 15–37 µm. The wear and micro-scratch tests results revealed significant improvement in wear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan Z, Ma Z, Liu L, Zhu S, and Gao L, J Eur Ceram Soc 34 (2014) 2203.

    Article  Google Scholar 

  2. Ruzic J, Stazic J, Rajkovic V, and Bozic D, Mater Des 62 (2014) 409.

    Article  Google Scholar 

  3. Stazic J, Trtica M, Rajkovic V, Ruzic J, and Bozic D, Appl Surf Sci 321 (2014) 353.

    Article  Google Scholar 

  4. Wuchina E J, Opila E, Opeka M, Fahrenholtz W, and Talmy I, Electrochem Soc Interface 16 (2007) 30.

    Google Scholar 

  5. Fahrenholtz W G, Wuchina E J, Lee W E, and Zhou Y (eds), Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Wiley, Hoboken, NJ (2014), p 112.

  6. Guo S Q, J Eur Ceram Soc 29 (2009) 995.

    Article  Google Scholar 

  7. Guo S Q, Nishimura T, Mizuguchi T, and Kagawa Y, J Eur Ceram Soc 28 (2008) 1891.

    Article  Google Scholar 

  8. Carney C M, Parthasarathy T A, and Cinibulk M K, J Am Ceram Soc 94 (2011) 2600.

    Article  Google Scholar 

  9. Zhang S C, Hilmas G E, and Fahrenholtz W G, J Am Ceram Soc 91 (2008) 3530.

    Article  Google Scholar 

  10. Ma H B, Man Z Y, Liu J X, Xu F F, and Zhang G J, Mater Des 81 (2015) 133.

    Article  Google Scholar 

  11. Ignat S, Sallamand P, Nichici A, Vannes B, Grevey D, and Cicală E, Surf Coat Technol 172 (2003) 233.

    Article  Google Scholar 

  12. Du B, Zou Z, Wang X, and Qu S, Appl Surf Sci 254 (2008) 6489.

    Article  Google Scholar 

  13. Baldridge T, Poling G, Foroozmehr E, Kovacevic R, Metz T, Kadekar V, and Gupta M C, Opt Laser Eng 51 (2013) 180.

    Article  Google Scholar 

  14. Xu P, Lin C X, Zhou C Y, and Yi X P, Surf Coat Technol 238 (2014) 9.

    Article  Google Scholar 

  15. Tong X, Li F H, Kuang M, Ma W Y, Chen X C, and Liu M, Appl Surf Sci 258 (2012) 3214.

    Article  Google Scholar 

  16. Simsek T, Baris M, and Akkurt A, Int J Mater Res 108 (2017) 486.

    Article  Google Scholar 

  17. Yue T M, Xie H, Lin X, and Yang H O, J Alloys Compd 509 (2011) 3705.

    Article  Google Scholar 

  18. Masanta M, Ganesh P, Kaul R, Nath A K, and Choudhury A R, Mater Sci Eng A 508 (2009) 134.

    Article  Google Scholar 

  19. Zhang Q, He J, Liu W, and Zhong M, Surf Coat Technol 162 (2003) 140.

    Article  Google Scholar 

  20. Zhang P, Yan H, Yao C, Li Z, Yu Z, and Xu P, Surf Coat Technol 206 (2011) 1229.

    Article  Google Scholar 

  21. Li R, Yuan T, Qiu Z, Zhou K, and Li J, Surf Coat Technol 258 (2014) 415.

    Article  Google Scholar 

  22. Navas C, Colaco R, Damborenea J D, and Vilar R, Surf Coat Technol 200 (2006) 6854.

    Article  Google Scholar 

  23. Zhang H, Shi Y, Kutsuna M, and Xu G J, Nucl Eng Des 240 (2010) 2691.

    Article  Google Scholar 

  24. Gao W, Zhao S, Liu F, Wang Y, Zhou C, and Lin X, Surf Coat Technol 248 (2014) 54.

    Article  Google Scholar 

  25. Höche D, Schikora H, Zutz H, Emmel A, Queitsch R, and Schaaf P, J Coat Technol Res 5 (2008) 505.

    Article  Google Scholar 

  26. Grigoriev S, Fominski V Y, Romanov R I, Volosova M A, and Shelyakov A V, Surf Coat Technol 259 (2014) 415.

    Article  Google Scholar 

  27. Pereira J C, Zambrano J C, Tobar M J, Yañez A, and Amigó V, Surf Coat Technol 270 (2015) 243.

    Article  Google Scholar 

  28. Paul C P, Alemohammad H, Toyserkani E, Khajepour A, and Corbin S, Mater Sci Eng A 464 (2007) 170.

    Article  Google Scholar 

  29. Sathish S, Anbarasan V, Geetha M, and Asokamani R, Trans Indian Inst Met 61 (2008) 235.

    Article  Google Scholar 

  30. Liu Z, Chan K C, Liu L, and Guo S F, Mater Lett 82 (2012) 67.

    Article  Google Scholar 

  31. Adraider Y, Hodgson S N B, Sharp M C, Zhang Z Y, Nabhani F, Waidh A A, and Pang Y X, J Eur Ceram Soc 32 (2012) 4229.

    Article  Google Scholar 

  32. Hemmati I, Ocelík V, and De Hosson J T M, Mater Lett 84 (2012) 69.

    Article  Google Scholar 

  33. Qu C C, Li J, Bai L L, Shao J Z, Song R, and Chen J L, J Alloys Compd 644 (2015) 450.

    Article  Google Scholar 

  34. Yang J, Huang J, Fan D, and Chen S, Mater Des 88 (2015) 1031.

    Article  Google Scholar 

  35. Li K, Li D, Liu D, Pei G, and Sun L, Appl Surf Sci 340 (2015) 143.

    Article  Google Scholar 

  36. Riveiro A, Mejías A, Lusquiños F, Val J D, Comesaña R, Pardo J, and Pou J, Surf Coat Technol 253 (2014) 214.

    Article  Google Scholar 

  37. Leunda J, Navas V G, Soriano C, and Sanz C, Surf Coat Technol 259 (2014) 570.

    Article  Google Scholar 

  38. Telasang G, Majumdar J D, Padmanabham G, Tak M, and Manna I, Surf Coat Technol 258 (2014) 1108.

    Article  Google Scholar 

  39. Liu K, Li Y, Wang J, and Ma Q, Mater Des 87 (2015) 66.

    Article  Google Scholar 

  40. Lu X L, Liu X B, Yu P C, Zhai Y J, Qiao S J, Wang M D, Wang Y G, and Chen Y, Appl Surf Sci 355 (2015) 350.

    Article  Google Scholar 

  41. Li R, Jin Y, Li Z, Zhu Y, and Wu M, Surf Coat Technol 259 (2014) 725.

    Article  Google Scholar 

  42. Fernández M R, García A, Cuetos J M, González R, Noriega A, and Cadenas M, Wear 324–325 (2015) 80.

    Article  Google Scholar 

  43. Farahmand P, Liu S, Zhang Z, and Kovacevicn R, Ceram Int 40 (2014) 15421.

    Article  Google Scholar 

  44. Li M, Zhang S, Li H, He Y, Yoon J H, and Cho T Y, J Mater Process Technol 202 (2008) 107.

    Article  Google Scholar 

  45. Yue T M, Xie H, Lin X, Yang H O, and Meng G H, J Alloys Compd 587 (2014) 588.

    Article  Google Scholar 

  46. Toyserkani E, Khajepour A, and Corbin S, Laser Cladding, CRC Press, Boca Raton, FL (2005), p 30.

  47. Yilbas B S, Akhtar S S, and Karatas C, Opt Laser Eng 49 (2011) 341.

    Article  Google Scholar 

  48. Yilbas B S, Akhtar S S, and Karatas C, J Mater Process Technol 211 (2011) 1268.

    Article  Google Scholar 

  49. Abioye T E, McCartney D G, and Clare A T, J Mater Process Technol 217 (2015) 232.

    Article  Google Scholar 

  50. Weng F, Chen C, and Yu H, Mater Des 58 (2014) 412.

    Article  Google Scholar 

  51. Xu J, Zou B, Zhao S, Hui Y, Huang W, Zhou X, Wang Y, Cai X, and Cao X, Ceram Int 40 (2014) 15537.

    Article  Google Scholar 

  52. Sahoo S K, Bishoyi B, Mohanty U K, Sahoo S K, Sahu J, and Bathe R N, Trans Indian Inst Met 70 (2017) 1817.

    Article  Google Scholar 

  53. Yilbas B S, Matthews A, Leyland A, Karatas C, Akhtara S S, and Abdul Aleema B J, Appl Surf Sci 263 (2012) 804.

    Article  Google Scholar 

  54. Şimşek T, Investigation of the Zirconium Diboride Nanocrystal Coated Different Materials Mechanic and Mechinability Properties, PhD thesis, Gazi University, Turkey (2014).

  55. Yilbas B S, Patela F, and Karatas C, Appl Surf Sci 282 (2013) 601.

    Article  Google Scholar 

  56. Sun S, Durandet Y, and Brandt M, Surf Coat Technol 194 (2005) 225.

    Article  Google Scholar 

  57. Wu Q, Li W, Zhong N, Gang W, and Haishan W, Mater Des 49 (2013) 10.

    Article  Google Scholar 

  58. Weng F, Yu H and Chen C, and J. Dai, Mater. Design 80 (2015) 174.

    Article  Google Scholar 

  59. Liu K, Li Y, Wang J, and Ma Q, J Alloys Compd 624 (2015) 234.

    Article  Google Scholar 

  60. Gupta A K, Galun R, and Phanikumar G, Trans Indian Inst Met 60 (2007) 299.

    Google Scholar 

  61. Li M, He Y, Yuan X, and Zhang S, Mater Des 27 (2006) 1114.

    Article  Google Scholar 

  62. Lehman E B, Indyka P, Bigos A, Kot M, and Tarkowski L, Surf Coat Technol 211 (2012) 62.

    Article  Google Scholar 

  63. Du B, Paital S R, and Dahotre N B, Opt Laser Technol 45 (2013) 647.

    Article  Google Scholar 

  64. Mingxi L, Yizhu H, and Xiaomin Y, Appl Surf Sci 252 (2006) 2882.

    Article  Google Scholar 

  65. Baris M, The Synthesis of Nano Cobalt Boride with High Energy Ball Milling and the Development of Mechanical Properties of Low Carbon Steel Surfaces with Coating, PhD Thesis, Gazi University, Turkey (2014).

  66. Huang K, Lin X, Xie C, and Yue T M, Bull Mater Sci 36 (2013) 99.

    Article  Google Scholar 

  67. Xuan H F, Wang Q Y, Bai S L, Liu Z D, Sun H G, and Yan P C, Surf Coat Technol 244 (2014) 203.

    Article  Google Scholar 

  68. Kumar K A, Kalaignan G P, and Muralidharan V S, Ceram Int 39 (2013) 2827.

    Article  Google Scholar 

  69. Farahmand P, Frosell T, McGregor M, and Kovacevic R, Int J Adv Manuf Technol 79 (2015) 1607.

    Article  Google Scholar 

  70. Xu G J, and Kutsuna M, Surf Eng 22 (2006) 345.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Development of Technology Department, Eti Maden Works General Management, for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Simsek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, T., Baris, M., Chattopadhyay, A.K. et al. Surface Treatment of S355JR Carbon Steel Surfaces with ZrB2 Nanocrystals by CO2 Laser. Trans Indian Inst Met 71, 1885–1896 (2018). https://doi.org/10.1007/s12666-018-1320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1320-1

Keywords

Navigation