Study population
This study was performed as part of the Kurabuchi Study [4,5,6,7, 13,14,15], a community-based cohort study that has targeted all residents aged 65 years and older in Kurabuchi Town (Takasaki City, Gunma Prefecture, Japan) since 2005. This mountain town located in the central part of Japan had a population of about 4800 in 2004, and about 25% of the residents are engaged in agriculture or forestry. Excluding those who were hospitalized or institutionalized, 1294 residents were identified in 2005 and 2006 as eligible for participation in the study, and 834 (64.5%) of them took part in the first health survey. This was followed by annual follow-ups.
In 2009 and 2010 (the baseline for the present study), an extra item—classification of kyphosis by visual assessment—was included in the health examinations performed at the eight community centers. Among the residents, 560 participated in this baseline survey, 406 of whom were original participants from the 2005–2006 survey, 81 of whom had newly entered the 65-year-old age bracket, and 73 of whom had newly decided to participate in the study since the first survey. At this point, we excluded 25 participants with ADL decline at baseline: 21 with certification of long-term need of support, 9 with dependence in ADL (Katz ADL) [16], 4 who had been admitted to nursing homes (there were several in more than one category). We further excluded 1 with cerebral palsy, and 1 with kyphosis too severe to assess. Follow-up ADL data was obtained annually until March 2014 (mean follow-up period: 4.5 years). Excluding 1 individual who moved out of the town during the follow-up, 532 participants (242 men, 290 women) were left for the final analysis.
The study protocol was approved by the Ethics Committees of Keio University School of Medicine (Tokyo, Japan) (Approval No.16-20) and Faculty of Medicine, Toho University (Tokyo, Japan) (Approval No. 2700623046), and written informed consent was obtained from all participants.
Classification of kyphosis by visual assessment
For the purposes of this study, we developed a simple evaluation method in which the rater uses reference illustrations (Fig. 1) to visually classify a participant’s degree of kyphosis into 1 of 4 categories: 1, no kyphosis; 2, slight kyphosis; 3, between 2 and 4; or 4, severe kyphosis. The rater does not require the participant to adopt any specific position for the evaluation but simply classifies the degree of kyphosis according to the participant’s posture when he or she is moving around normally. We recruited three raters (A, B, and C), none of whom are orthopedic specialists, and masked each to the classifications made by the other 2, and to the kyphotic evaluation results obtained by conventional methods.
Measurement of kyphosis by conventional methods
The degree of kyphosis was also assessed by three different conventional methods: the kyphosis index (KI, standing position), Spinal Mouse (standing position), and the block method (supine position). All three types of conventional assessment were performed by trained examiners.
For KI assessments, the participants were asked to relax and stand naturally, and the thoracic curvature between the spinous processes of the seventh cervical and fourth lumber vertebrae was traced onto paper with an adjustable curve ruler; KI was then calculated according to the formula proposed by Milne and Lauder [9]. Since no cutoff value for KI has been established, we classified the results into sex-specific quartiles.
In the second conventional method, the participants were again asked to stand in a relaxed position, and spinal posture was evaluated with a Spinal Mouse (Indiag, Volkerswill, Switzerland), a computer-assisted, noninvasive device to measure spinal shape; measurements were made as described elsewhere [7]. From the available parameters, we selected inclination (the angle between a straight line from Th1 to S1 and true vertical) [17] for this study. Since no cutoff value for inclination has been suggested, we classified the results into sex-specific quartiles, as in our previous research [7].
For the block method, the distance between the participant’s occiput and the table was measured with blocks, each measuring 1.5 cm in height. The blocks were placed under the neck with the participants in the supine position, lying with their face parallel to the floor, and the number of blocks used for each participant was recorded [6, 18]. We showed in a previous study that there is no difference in the risk ratio (RR) for ADL decline with measurements between 0 and 2 blocks [6], so we classified the results into four categories: 0–2 blocks, 3 blocks, 4 blocks, or ≥ 5 blocks.
Outcome measurements
The participants were followed up annually and assessed for any dependence in ADL. We defined dependence in ADL as previously reported [6]: admission to a nursing home, certification of a need for long-term care/support, or a need for help in any of the six basic ADL items in the Katz Index [16]. We certified a participant as dependent in ADL if he/she met at least one of the three criteria once or more during the follow-up period, and defined this condition as “combined ADL decline.”
Information on nursing home admission, certification of a need for long-term care/support, and death was collected from the Kurabuchi Branch Office of Takasaki City Hall. Information relevant to Katz ADL classification was collected during the annual home-visit surveys.
Covariates at baseline
Information was collected during the baseline survey in 2009 and 2010 on age, sex, current smoking status (yes/no), current drinking status (yes/no), living status (with spouse/family or alone), history of life-threatening diseases (stroke, coronary heart disease, diabetes mellitus, cancer—summary answer of yes or no), current knee joint pain (always, often, occasionally, or never), current back pain (always, often, occasionally, or never). The demi-span [13] was used to estimate body mass index (BMI), and participants were categorized as underweight (< 18.5), normal weight (18.5–24.9), or overweight (≤ 25). Information on marital status (married vs widowed/divorced/single) and educational level (high school or higher vs junior high school or lower) was obtained from the first survey in 2005 to 2006. Because vision impairment, hearing handicap, and depressive symptoms are also known to be associated with ADL decline [5, 19,20,21], we also included these variables as potential confounders. Vision impairment was defined as a corrected distance visual acuity of worse than 0.5 in the better eye, as measured with a Landolt broken ring chart at 5 m, according to the US criteria [22]. Hearing handicap was defined as a score of 10 or more on the 10-item screening version of the Hearing Handicap Inventory for the Elderly (HHIE-S) [23]. Depressive symptoms were defined as a score of 2 or more on the Geriatric Depression Scale 5-item version (GDS5) [24]. Bone stiffness, which is thought to be related to kyphosis, was measured in the calcaneus with a Q-1000 Express (GE Yokogawa Medical Systems, Tokyo, Japan) using a quantitative ultrasound bone mass measurement system, and the results were classified into sex-specific quartiles.
Statistical analysis
STATA version 14 (STATA Corp., College Station, TX) was used for all data analyses.
The participants were divided into four groups according to the visual classification of kyphosis by each rater. The Chi-square test or Fisher’s exact test was used to compare the baseline variables among the four kyphotic classifications. The observer agreement between the raters was assessed using Fleiss’s Kappa [25].
The association of each kyphosis category, as classified visually, with ADL decline, was assessed by crude analysis, and then by three multivariate analyses using Poisson regression models, with category 2 (into which the largest number of participants fell) used as the reference. The first model was adjusted for age categories and sex. Model 1 included marital status, education, drinking, smoking, BMI, vision impairment, hearing handicap, knee joint pain, depressive symptoms, and history of life-threatening diseases, which were considered a priori confounders or were associated with visual kyphotic classification, as well as age categories and sex. In addition to the variables adjusted for in Model 1, back pain and bone stiffness (categories) were added in Model 2. The strengths of associations were indicated by the RRs and 95% confidence intervals (CIs).
Finally, the association of each conventional kyphotic measure (KI, inclination, and number of blocks) with ADL decline was assessed by crude analyses, and then by the same three multivariate analyses, with Poisson regression models used for the visual classification. In assessing KI and inclination, the second quantile was used as the reference. For the block method, the 0–2 block category was used as the reference.