Skip to main content
Log in

Guanxin V Relieves Ventricular Remodeling by Inhibiting Inflammation: Implication from Virtual Screening, Systematic Pharmacology, Molecular Docking, and Experimental Validation

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To reveal the anti-inflammatory mechanism of Guanxin V, which is prescribed for ventricular remodeling in clinical practice.

Methods

Guanxin V-, ventricular remodeling-, and inflammation-related targets were obtained through an integrated strategy of virtual screening and systematic pharmacology, and then the shared targets were visualised with a Venn diagram. Guanxin V network and the protein-protein interaction network were drawn, and enrichment analysis was conducted. Finally, the main results obtained from the integrated strategy were validated by molecular docking and in vivo experiments.

Results

A total of 251, 11,425, and 15,246 Guanxin V-, ventricular remodeling-, and inflammation-related targets were acquired, respectively. Then, 211 shared targets were considered to contribute to the mechanism of ventricular remodeling treated by Guanxin V. Guanxin network and the protein-protein interaction network were drawn, and enrichment analysis showed some cardiovascular-related biological processes and signaling pathways. Molecular docking revealed that the Guanxin V-derived compounds could align with key targets. Final in vivo experiments proved that Guanxin V reverses ventricular remodeling by inhibiting inflammation.

Conclusion

Guanxin V relieves ventricular remodeling by regulating inflammation, which provides new ideas for the anti-ventricular remodeling mechanism of Guanxin V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Islam RA, Khalsa SS, Vyas AK, et al. Sex-specific impacts of exercise on cardiovascular remodeling. J Clin Med 2021;10:3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mihl C, Dassen WR, Kuipers H. Cardiac remodeling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J 2008;16:129–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paul S. Ventricular remodeling. Crit Care Nurs Clin North Am 2003;15:407–411.

    Article  PubMed  Google Scholar 

  4. Katz DH, Beussink L, Sauer AJ, et al. Prevalence, clinical characteristics, and outcomes associated with eccentric versus concentric left ventricular hypertrophy in heart failure with preserved ejection fraction. Am J Cardiol 2013;112:1158–1164.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Azevedo PS, Polegato BF, Minicucci MF, et al. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016;106:62–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao Y, Li A, Wang S, et al. Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo. Biomaterials 2022;282:121382.

    Article  CAS  PubMed  Google Scholar 

  7. Liang B, Zhou Y, Fu L, et al. Antiarrhythmic mechanisms of Chinese herbal medicine Dingji Fumai Decoction. Evid Based Complement Alternat Med 2020;2020:9185707.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liang B, Zou FH, Fu L, et al. Chinese herbal medicine Dingji Fumai Decoction for ventricular premature contraction: a real-world trial. Biomed Res Int 2020;2020:5358467.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liang B, Qu Y, Zhao QF, et al. Guanxin V for coronary artery disease: a retrospective study. Biomed Pharmacother 2020;128:110280.

    Article  CAS  PubMed  Google Scholar 

  10. Liang B, Zhang XX, Gu N. Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther 2020;20:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang XX, Shao CL, Cheng SY, et al. Effect of Guanxin V in animal model of acute myocardial infarction. BMC Complement Med Ther 2021;21:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang B, Li R, Liang Y, et al. Guanxin V acts as an antioxidant in ventricular remodeling. Front Cardiovasc Med 2022;8:778005.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liang B, Zhang XX, Li R, et al. Guanxin V protects against ventricular remodeling after acute myocardial infarction through the interaction of TGF-β 1 and Vimentin. Phytomedicine 2022;95:153866.

    Article  CAS  PubMed  Google Scholar 

  14. Liang B, Zhang XX, Li R, et al. Guanxin V alleviates acute myocardial infarction by restraining oxidative stress damage, apoptosis, and fibrosis through the TGF-β 1 signalling pathway. Phytomedicine 2022;100:154077.

    Article  PubMed  Google Scholar 

  15. Ru JL, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xue R, Fang Z, Zhang M, et al. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 2012;41:D1089–D95.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci Rep 2016;6:21146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang B, Liang Y, Li R, et al. Integrating systematic pharmacology-based strategy and experimental validation to explore the synergistic pharmacological mechanisms of Guanxin V in treating ventricular remodeling. Bioorg Chem 2021;115:105187.

    Article  CAS  PubMed  Google Scholar 

  19. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019;47:W357–W364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang Y, Liang B, Chen W, et al. Potential mechanism of Dingji Fumai Decoction against atrial fibrillation based on network pharmacology, molecular docking, and experimental verification integration strategy. Front Cardiovasc Med 2021;8:712398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Safran M, Dalah I, Alexander J, et al. GeneCards version 3: the human gene integrator. Database 2010;2010:baq020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2019;48:D1031–D1041.

    PubMed Central  Google Scholar 

  23. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research 2018;46:D1074–D1082.

    Article  CAS  PubMed  Google Scholar 

  24. Pinero J, Bravo A, Queralt N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017;45:D833–D839.

    Article  CAS  PubMed  Google Scholar 

  25. Pinero J, Ramirez JM, Sauch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020;48:D845–D855.

    CAS  PubMed  Google Scholar 

  26. Rappaport N, Twik M, Plaschkes I, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res 2017;45:877–887.

    Article  Google Scholar 

  27. Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: update 2019. Nucleic Acids Res 2018;41:948–954.

    Google Scholar 

  28. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–D613.

    Article  CAS  PubMed  Google Scholar 

  29. Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014;8Suppl 4:S11.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou JG, Liang B, Jin SH, et al. Development and validation of an RNA-seq-based prognostic signature in neuroblastoma. Front Oncol 2019;9:1361.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. The UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021;49:D480–D489.

    Article  Google Scholar 

  36. Rigsby RE, Parker AB. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem Mol Biol Educ 2016;44:433–437.

    Article  CAS  PubMed  Google Scholar 

  37. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kemmish H, Fasnacht M, Yan L. Fully automated antibody structure prediction using BIOVIA tools: validation study. PLoS One 2017;12:e0177923.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liang B, Liang Y, Gu N. Pharmacological mechanisms of sodium-glucose co-transporter 2 inhibitors in heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2022;22:261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang JH, Huang XH, Chen ZY, et al. Dose conversion among different animals and healthy volunteers in pharmacological study. Chin J Clin Pharmacol Ther (Chin) 2004:1069–1072.

  41. Geng L, Zheng LZ, Kang YF, et al. Zhilong Huoxue Tongyu Capsule attenuates hemorrhagic transformation through the let-7f/TLR4 signaling pathway. J Ethnopharmacol 2023;312:116521.

    Article  CAS  PubMed  Google Scholar 

  42. Leiva O, AbdelHameid D, Connors JM, et al. Common pathophysiology in cancer, atrial fibrillation, atherosclerosis, and thrombosis. JACC CardioOncol 2021;3:619–634.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Glasenapp A, Derlin K, Wang Y, et al. Multimodality imaging of inflammation and ventricular remodeling in pressure-overload heart failure. J Nucl Med 2020;61:590–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tschöpe C, Ammirati E, Bozkurt B, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol 2021;18:169–193.

    Article  PubMed  Google Scholar 

  45. Puhl SL, Müller A, Wagner M, et al. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2015;309:H345–H359.

    Article  CAS  PubMed  Google Scholar 

  46. Krishnamurthy P, Rajasingh J, Lambers E, et al. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 2009;104:e9–e18.

    Article  CAS  PubMed  Google Scholar 

  47. Yin H, Li P, Hu F, et al. IL-33 attenuates cardiac remodeling following myocardial infarction via inhibition of the p38 MAPK and NF-κ B pathways. Mol Med Rep 2014;9:1834–1838.

    Article  CAS  PubMed  Google Scholar 

  48. Krishnamurthy P, Lambers E, Verma S, et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. Faseb J 2010;24:2484–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bai WW, Wang H, Gao CH, et al. Continuous infusion of Angiotensin IV protects against acute myocardial infarction via the inhibition of inflammation and autophagy. Oxid Med Cell Longev 2021;2021:2860488.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pan X, Zhang K, Shen C, et al. Astaxanthin promotes M2 macrophages and attenuates cardiac remodeling after myocardial infarction by suppression inflammation in rats. Chin Med J 2020;133:1786–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan Y, Bie YL, Chen L, et al. Lingbao Huxin Pill alleviates apoptosis and inflammation at infarct border zone through SIRT1-mediated FOXO1 and NF-κB pathways in rat model of acute myocardial infarctio. Chin J Integr Med 2021;28:330–338.

    Article  PubMed  Google Scholar 

  52. Liang Y, Liang B, Wu XR, et al. Network pharmacology-based systematic analysis of molecular mechanisms of Dingji Fumai Decoction for ventricular arrhythmi. Evid Based Complement Alternat Med 2021;2021:5535480.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li L, Luo W, Qian Y, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κ B-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 2019;59:152774.

    Article  CAS  PubMed  Google Scholar 

  54. Oyagbemi AA, Akinrinde AS, Adebiyi OE, et al. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-κB/Kim-1 signaling in the heart and kidney of rats. Environ Toxicol Pharmacol 2020;80:103488.

    Article  CAS  PubMed  Google Scholar 

  55. Chen P, An Q, Huang Y, et al. Prevention of endotoxin-induced cardiomyopathy using sodium tanshinone II A sulfonate: involvement of augmented autophagy and NLRP3 inflammasome suppression. Eur J Pharmacol 2021;909:174438.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang B, Yu P, Su E, et al. Sodium tanshinone II A sulfonate improves adverse ventricular remodeling post MI by reducing myocardial necrosis, modulating inflammation and promoting angiogenesis. Curr Pharm Des 2022;28751–759.

  57. Koc K, Geyikoglu F, Cakmak O, et al. The targets of β-sitosterol as a novel therapeutic against cardio-renal complications in acute renal ischemia/reperfusion damage. Naunyn Schmiedebergs Arch Pharmacol 2021;394:469–479.

    Article  CAS  PubMed  Google Scholar 

  58. Wang AW, Song L, Miao J, et al. Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κ B, and calcineurin signaling pathways in mice. Am J Hypertens 2015;28:518–526.

    Article  CAS  PubMed  Google Scholar 

  59. Sahu BD, Kumar JM, Kuncha M, et al. Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice. Life Sci 2016;144:8–18.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar M, Kasala ER, Bodduluru LN, et al. Baicalein protects isoproterenol-induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm Res 2016;65:613–622.

    Article  CAS  PubMed  Google Scholar 

  61. Ma L, Li XP, Ji HS, et al. Baicalein protects rats with diabetic cardiomyopathy against oxidative stress and inflammation injury via phosphatidylinositol 3-kinase (PI3K)/ AKT pathway. Med Sci Monit 2018;24:5368–5375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang L, Li J. lncRNA GMDS-AS1 upregulates IL-6, TNF-α and IL-1 β, and induces apoptosis in human monocytic THP-1 cells via miR-96-5p/caspase 2 signaling. Mol Med Rep 2022;25:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all individuals involved in GXV preparation. We thank CHEN Si-qi and YAN Jia-yu from Nanjing University of Chinese Medicine for their help in the experiment. We are also grateful to all research scientists who participated in the aforementioned databases.

Author information

Authors and Affiliations

Authors

Contributions

Liang B and Gu N conceived, designed, and planned the study. Liang B and Gu N acquired and analyzed the data. Zhang XX and Liang B completed the experiments. Liang B, Zhang XX, and Gu N interpreted the results. Liang B and Zhang XX drafted the manuscript and Gu N contributed to the critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ning Gu.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Supported by the National Natural Science Foundation of China (No. 81774229) and Jiangsu Leading Talent Project of Traditional Chinese Medicine (Jiangsu TCM 2018 No.4)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Zhang, Xx. & Gu, N. Guanxin V Relieves Ventricular Remodeling by Inhibiting Inflammation: Implication from Virtual Screening, Systematic Pharmacology, Molecular Docking, and Experimental Validation. Chin. J. Integr. Med. 29, 1077–1086 (2023). https://doi.org/10.1007/s11655-023-3642-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3642-z

Keywords

Navigation