Skip to main content

Advertisement

Log in

Therapeutic Mechanism of Kai Xin San on Alzheimer’s Disease Based on Network Pharmacology and Experimental Validation

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer’s disease (AD) based on network pharmacology and experimental validation.

Methods

The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway.

Results

In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A β)-glycogen synthase kinase-3 beta (GSK3 β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01).

Conclusion

KXS exerted neuroprotective effects by regulating the Aβ -GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnett R. Alzheimer’s disease. Lancet 2019;393:1589.

    Article  PubMed  Google Scholar 

  2. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018;25:59–70.

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Morris MC, Dhana K, Ventrelle J, Johnson K, Bishop L, et al. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) study: rationale, design and baseline characteristics of a randomized control trial of the MIND diet on cognitive decline. Contemp Clin Trials 2021;102:106270.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 2021;20:68–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartels T, Schepper SD, Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinsons diseases. Science 2020;370:66–69.

    Article  CAS  PubMed  Google Scholar 

  6. Leng F, and Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021;17:157–172.

    Article  PubMed  Google Scholar 

  7. Borelli CM, Grennan D, Muth CC. Causes of memory loss in elderly persons. JAMA 2020;323:486.

    Article  PubMed  Google Scholar 

  8. Plascencia-Villa G, Perry G. Preventive and therapeutic strategies in Alzheimer’s disease: focus on oxidative stress, redox metals, and ferroptosis. Antioxid Redox Signal 2021;34:591–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother 2018;106:553–565.

    Article  CAS  PubMed  Google Scholar 

  10. Fink HA, Linskens EJ, MacDonald R, Silverman PC, McCarten JR, Talley KMC, et al. Benefits and harms of prescription drugs and supplements for treatment of clinical Alzheimer-type dementia. Ann Intern Med 2020;172:656–668.

    Article  PubMed  Google Scholar 

  11. Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer’s disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 2020;15:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou XB, Zhang YX, Zhou CX, Ma JJ. Chinese herbal medicine adjusting brain microenvironment via mediating central nervous system lymphatic drainage in Alzheimer’s disease. Chin J Integr Med 2022;28:176–184.

    Article  CAS  PubMed  Google Scholar 

  13. Ji Q, Zhu F, Liu X, Li Q, Su SB. Recent advance in applications of proteomics technologies on traditional chinese medicine research. Evid Based Complement Alternat Med 2015;2015:983139.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ong WY, Wu YJ, Farooqui T, Farooqui AA. Qi Fu Yin—a Ming Dynasty prescription for the treatment of dementia. Mol Neurobiol 2018;55:7389–7400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng Q, Li L, Siu W, Jin Y, Cao M, Li W, et al. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomed Pharmacother 2019;120:109370.

    Article  CAS  PubMed  Google Scholar 

  16. Lin ZY, Huang TW, Huang JS, Zheng GY. Tiaobu Xinshen Recipe improved mild cognitive impairment of Alzheimer’s disease patients with Xin (Heart) and Shen (Kidney) deficiency. Chin J Integr Med 2020;26:54–58.

    Article  CAS  PubMed  Google Scholar 

  17. Tang C, Ye Y, Feng Y, Quinn RJ. TCM, brain function and drug space. Nat Prod Rep 2016;33:6–25.

    Article  CAS  PubMed  Google Scholar 

  18. Lu H, Zhang J, Liang Y, Qiao Y, Yang C, He X, et al. Network topology and machine learning analyses reveal microstructural white matter changes underlying Chinese medicine Dengzhan Shengmai treatment on patients with vascular cognitive impairment. Pharmacol Res 2020;156:104773.

    Article  CAS  PubMed  Google Scholar 

  19. Fu H, Xu Z, Zhang XL, Zheng GQ. Kaixinsan, a well-known Chinese herbal prescription, for Alzheimer’s disease and depression: a preclinical systematic review. Front Neurosci 2019;13:1421.

    Article  PubMed  Google Scholar 

  20. Zhu KY, Xu SL, Choi RC, Yan AL, Dong TT, Tsim KW. Kai-xin-san, a Chinese herbal decoction containing Ginseng Radix et rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria, stimulates the expression and secretion of neurotrophic factors in cultured astrocytes. Evid Based Complement Alternat Med 2013;2013:731385.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol 2019;10:123.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu CS, Xia T, Luo ZY, Wu YY, Hu YN, Chen FL, et al. Network pharmacology and pharmacokinetics integrated strategy to investigate the pharmacological mechanism of Xianglian Pill on ulcerative colitis. Phytomedicine 2021;82:153458.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Z, Chen B, Chen S, Lin M, Chen Y, Jin S, et al. Applications of network pharmacology in traditional Chinese medicine research. Evid Based Complement Alternat Med 2020;2020:1646905.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Wang ZY, Zheng JH, Li S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med 2021;19:1–11.

    PubMed  Google Scholar 

  25. Li WH, Han JR, Ren PP, Xie Y, Jiang DY. Exploration of the mechanism of Zisheng Shenqi Decoction against gout arthritis using network pharmacology. Comput Biol Chem 2021;90:107358.

    Article  CAS  PubMed  Google Scholar 

  26. Feng X, Ma G, Shi H, Wang Y, Chao X. An integrative serum pharmacology-based approach to study the anti-tumor activity of B. paniculatum aqueous bulb extract on the human hepatocellular carcinoma cell line BEL-7404. Front Pharmacol 2020;11:01261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res 2017;45:D877–D887.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Chen L, Zhang M, Yang Y, Wong G. PDmethDB: a curated Parkinson’s disease associated methylation information database. Comput Struct Biotechnol J 2020;18:3745–3749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du Q, Guo X, Wang M, Li Y, Sun X, Li Q. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J Hematol Oncol 2020;13:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu S, Liu S, Wang N, Yu D, Qin M, Wu J, et al. Novel insights into antidepressant mechanism of Kai Xin San formula: inhibiting NLRP3 inflammasome activation by promoting autophagy. Phytomedicine 2021;93:153792.

    Article  CAS  PubMed  Google Scholar 

  31. Wang N, Jia Y, Zhang B, Li Y, Murtaza G, Huang S, et al. Kai-Xin-San, a Chinese herbal decoction, accelerates the degradation of β-amyloid by enhancing the expression of neprilysin in rats. Evid Based Complement Alternat Med 2020;2020:3862342.

    PubMed  PubMed Central  Google Scholar 

  32. Wang N, Jia YM, Zhang B, Xue D, Reeju M, Li Y, et al. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation. Neural Regen Res 2017;12:654–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stara V, Mach M, Ujhazy E, Liptak B, Gasparova Z. Beneficial effect of 6 weeks lasting handling of adult rats on spatial memory in experimental model of neurodegeneration. Interdiscip Toxicol 2018;11:217–220.

    Article  PubMed  Google Scholar 

  34. Pei H, Ma L, Cao Y, Wang F, Li Z, Liu N, et al. Traditional Chinese medicine for Alzheimer’s disease and other cognitive impairment: a review. Am J Chin Med 2020;48:487–511.

    Article  CAS  PubMed  Google Scholar 

  35. Jarrell JT, Gao L, Cohen DS, Huang X. Network medicine for Alzheimer’s disease and traditional Chinese medicine. Molecules 2018;23:1143.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zheng P, Hu M, Xie Y, Yu Y, Jaaro-Peled H, XF H. Aripiprazole and haloperidol protect neurite lesions via reducing excessive D2R-DISC1 complex formation. Prog Neuropsychopharmacol Biol Psychiatry 2019;92:59–69.

    Article  CAS  PubMed  Google Scholar 

  37. Jessen F. Refining the understanding of typical Alzheimer disease. Nat Rev Neurol 2019;15:623–624.

    Article  PubMed  Google Scholar 

  38. Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 2007;6:464–479.

    Article  CAS  PubMed  Google Scholar 

  39. Wen Y, Planel E, Herman M, Figueroa HY, Wang L, Liu L, et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 2008;28:2624–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashiguchi M, Hashiguchi T. Kinase-kinase interaction and modulation of tau phosphorylation. Int Rev Cell Mol Biol 2013;300:121–160.

    Article  CAS  PubMed  Google Scholar 

  41. He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, et al. Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 2018;24:29–38.

    Article  CAS  PubMed  Google Scholar 

  42. Rudrabhatla P, Jaffe H, Pant HC. Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer’s NFTs. FASEB J 2011;25:3896–3905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci 2018;22:57–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 2019;76:915–924.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005;22:1942–1950.

    Article  PubMed  Google Scholar 

  46. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F. Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 2013;12:39–49.

    Article  CAS  PubMed  Google Scholar 

  47. Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P. In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Transl Neurodegener 2014;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem 2005;280:1790–1796.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wang K and Yang R performed the experiments, acquired

Corresponding author

Correspondence to Ming-wang Kong.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supported by the National Science and Technology Major Project of China (No. 2009ZX09103-347)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Yang, R., Chen, Tt. et al. Therapeutic Mechanism of Kai Xin San on Alzheimer’s Disease Based on Network Pharmacology and Experimental Validation. Chin. J. Integr. Med. 29, 413–423 (2023). https://doi.org/10.1007/s11655-022-3589-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3589-5

Keywords

Navigation