Skip to main content

Advertisement

Log in

Gallic Acid: A Potential Anti-Cancer Agent

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Cancer is one of the most devastating diseases worldwide and definitive therapeutics for treating cancer are not yet available despite extensive research efforts. The key challenges include limiting factors connected with traditional chemotherapeutics, primarily drug resistance, low response rates, and adverse side-effects. Therefore, there is a high demand for novel anti-cancer drugs that are both potent and safe for cancer prevention and treatment. Gallic acid (GA), a natural botanic phenolic compound, can mediate various therapeutic properties that are involved in anti-inflammation, anti-obesity, and anti-cancer activities. More recently, GA has been shown to exert anti-cancer activities via several biological pathways that include migration, metastasis, apoptosis, cell cycle arrest, angiogenesis, and oncogene expression. This review discusses two aspects, one is the anti-cancer potential of GA against different types of cancer and the underlying molecular mechanisms, the other is the bibliometric analysis of GA in cancer and tumor research. The results indicated that lung cancer, prostate cancer, stomach cancer, and colon adenocarcinoma may become a hot topic in further research. Overall, this review provides evidence that GA represents a promising novel, potent, and safe anti-cancer drug candidate for treating cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subramanian AP, John AA, Vellayappan MV, et al. Gallic acid: prospects and molecular mechanisms of its anticancer activity. RSC Advances 2015;5:35608–35621.

    Article  CAS  Google Scholar 

  2. Sanches PRS, Carneiro BM, Batista MN, et al. A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity. Amino Acids 2015;47:1433–1443.

    Article  CAS  PubMed  Google Scholar 

  3. Carr AC, Vissers MCM, Cook J. Relief from cancer chemotherapy side effects with pharmacologic vitamin C. N Z Med J 2014;127:66–70.

    PubMed  Google Scholar 

  4. Lao YZ, Wan G, Liu ZY, et al. The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 2014;10:736–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Man SL, Gao WY, Wei CL, et al. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res 2012;26:1449–1465.

    Article  CAS  PubMed  Google Scholar 

  6. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol 2005;100:72–79.

    Article  CAS  PubMed  Google Scholar 

  7. Huang LF, Li BH, Yang XY, et al. An acylated derivative of pentadecanoic acid with anticancer activity and its application. China patent CN 106496035A. 2016.

  8. Wang DM, Lin SS, Zheng SH, et al. Inhibition of epidermal growth factor receptor activity and active site analysis by UPLC/Q-TOF-MS in Rhus chinensis Mill. Chin Tradit Herb Drug (Chin) 2013;44:2515–2519.

    CAS  Google Scholar 

  9. Choi KC, Lee YH, Jung MG, et al. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappa B signaling by preventing RelA acetylation in A549 lung cancer cells. Mol Cancer Res 2009;7:2011–2021.

    Article  CAS  PubMed  Google Scholar 

  10. Lopez-Lazaro M, Calderon-Montano JM, Burgos-Moron E, et al. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I — and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide. Mutagenesis 2011;26:489–498.

    Article  CAS  PubMed  Google Scholar 

  11. Liu KC, Huang AC, Wu PP, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep 2011;26:177–184.

    PubMed  Google Scholar 

  12. Han YH, Moon HJ, You BR, et al. The MEK inhibitor PD98059 attenuates growth inhibition and death in gallic acid-treated Calu-6 lung cancer cells by preventing glutathione depletion. Mol Med Rep 2010;3:519–524.

    Article  CAS  PubMed  Google Scholar 

  13. Wang RX, Ma LJ, Weng D, et al. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol Rep 2016;35:3075–3083.

    Article  CAS  PubMed  Google Scholar 

  14. Liu KC, Ho HC, Huang AC, et al. Gallic acid provokes DNA damage and suppresses DNA repair gene expression in human prostate cancer PC-3 cells. Environ Toxicol 2013;28:579–587.

    Article  CAS  PubMed  Google Scholar 

  15. Kaur M, Velmurugan B, Rajamanickam S, et al. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, proapoptotic and anti-tumorigenic effe cts against prostate carcinoma xenograft growth in nude mice. Pharm Res 2009;26:2133–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu JD, Kao SH, Ou TT, et al. Gallic acid induces G2/M phase arrest of breast cancer cell MCF-7 through stabilization of p27(Kip1) attributed to disruption of p27(Kip1)/Skp2 complex. J Agr Food Chem 2011;59:1996–2003.

    Article  CAS  Google Scholar 

  17. Chen YJ, Chang LS. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol Nut Food Res 2012;56:1398–1412.

    Article  CAS  Google Scholar 

  18. Reddy TC, Reddy DB, Aparna A, et al. Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-kappa B inactivation. Toxicol In Vitro 2012;26:396–405.

    Article  PubMed  CAS  Google Scholar 

  19. Kim NS, Jeong SI, Hwang BS, et al. Gallic acid inhibits cell viability and induces apoptosis in human monocytic cell line U937. J Med Food 2011;14:240–246.

    Article  CAS  PubMed  Google Scholar 

  20. Ho HH, Chang CS, Ho WC, et al. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-kappa B activity. Toxicol Appl Pharm 2013;266:76–85.

    Article  CAS  Google Scholar 

  21. Ho HH, Chang CS, Ho WC, et al. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-kappa B activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol 2010;48:2508–2516.

    Article  CAS  PubMed  Google Scholar 

  22. Forester SC, Choy YY, Waterhouse AL, et al. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol Carcinogen 2014;53:432–439.

    Article  CAS  Google Scholar 

  23. Daduang J, Palasap A, Daduang S, et al. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev 2015;16:169–174.

    Article  PubMed  Google Scholar 

  24. Faried A, Kurnia D, Faried LS, et al. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol 2007;30:605–613.

    CAS  PubMed  Google Scholar 

  25. Jagan S, Ramakrishnan G, Anandakumar P, et al. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol Cell Biochem 2008;319:51–59.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Li D, Yu L, et al. Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy 2012;58:185–194.

    Article  CAS  PubMed  Google Scholar 

  27. Locatelli C, Rosso R, Santos-Silva MC, et al. Ester derivatives of gallic acid with potential toxicity toward L1210 leukemia cells. Bioorgan Med Chem 2008;16:3791–3799.

    Article  CAS  Google Scholar 

  28. Schuck A, Weisburg J, Esan H, et al. Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells. Oxid Antioxid Med Sci 2013;2:265–274.

    Article  Google Scholar 

  29. Chia YC, Rajbanshi R, Calhoun C, et al. Anti-neoplastic effects of gallic acid, a major component of toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 2010;15:8377–8389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu CL, Lo WH, Yen GC. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a fas- and mitochondrial-mediated pathway. J Agr Food Chem 2007;55:7359–7365.

    Article  CAS  Google Scholar 

  31. Civenni G, Iodice MG, Nabavi SF, et al. Gallic acid and methyl-3-O-methyl gallate: a comparative study on their effects on prostate cancer stem cells. Rsc Advances 2015;5:63800–63806.

    Article  CAS  Google Scholar 

  32. Chen HM, Wu YC, Chia YC, et al. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett 2009;286:161–171.

    Article  CAS  PubMed  Google Scholar 

  33. Cedo L, Castell-Auvi A, Pallares V, et al. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells. Nutr Cancer Int J 2014;66:88–96.

    Article  CAS  Google Scholar 

  34. Ji BC, Hsu WH, Yang JS, et al. Gallic acid induces apoptosis via Caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agr Food Chem 2009;57:7596–7604.

    Article  CAS  Google Scholar 

  35. Hsu SS, Chou CT, Liao WC, et al. The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem Biol Interact 2016;252:61–73.

    Article  CAS  PubMed  Google Scholar 

  36. Isuzugawa K, Inoue M, Ogihara Y. Ca2+-dependent caspase activation by gallic acid derivatives. Biol Pharm Bull 2001;24:844–847.

    Article  CAS  PubMed  Google Scholar 

  37. Raina K, Rajamanickam S, Deep G, et al. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Mol Cancer Ther 2008;7:1258–1267.

    Article  CAS  PubMed  Google Scholar 

  38. Yeh RD, Chen JC, Lai TY, et al. Gallic acid induces G0/G1 phase arrest and apoptosis in human leukemia HL-60 cells through inhibiting Cyclin D and E, and activating mitochondria-dependent pathway. Anticancer Res 2011;31:2821–2832.

    CAS  PubMed  Google Scholar 

  39. Guimaräes TA, Farias LC, Fraga CADC, et al. Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions. Anticancer Drug 2016;27:407–416.

    Article  CAS  Google Scholar 

  40. Lu Y, Jiang F, Jiang H, et al. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur J Pharmacol 2010;641:102–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawada M, Ohno Y, Ri Y, et al. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anticancer Drug 2001;12:847–852.

    Article  CAS  Google Scholar 

  42. Kim TW, Paveen S, Lee YH, et al. Comparison of cytotoxic effects of pentagalloylglucose, gallic acid, and its derivatives against human cancer MCF-7 and MDA MB-231 cells. B Korean Chem Soc 2014;35:987–988.

    Article  CAS  Google Scholar 

  43. Klenow S, Glei M. New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 2009;23:1055–1061.

    Article  CAS  PubMed  Google Scholar 

  44. Russell LH, Mazzio E, Badisa RB, et al. Autoxidation of gallic acid induces ROS-dependant death in human prostate cancer LNCaP cells. Anticancer Res 2012;32:1595–1602.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang WN, Li XH, Li YC, et al. Gallic acid induces apoptosis and inhibits cell migration by upregulating miR-518b in SW1353 human chondrosarcoma cells. Int J Oncol 2014;44:91–98.

    Article  CAS  PubMed  Google Scholar 

  46. Liao CL, Lai KC, Huang AC, et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol 2012;50:1734–1740.

    Article  CAS  PubMed  Google Scholar 

  47. Lo C, Lai TY, Yang JH, et al. Gallic acid induces apoptosis in A375.S2 human melanoma cells through caspase-dependent and -independent pathways. Int J Oncol 2010;37:377–385.

    CAS  PubMed  Google Scholar 

  48. Madlener S, Illmer C, Horvath Z, et al. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 2007;245:156–162.

    Article  CAS  PubMed  Google Scholar 

  49. Morais MCC, Luqman S, Kondratyuk TP, et al. Suppression of TNF-α induced NFκB activity by gallic acid and its semi-synthetic esters: possible role in cancer chemoprevention. Nat Prod Res 2010;24:1758–1765.

    Article  CAS  PubMed  Google Scholar 

  50. Sun GJ, Zhang SQ, Xie YR, et al. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol Lett 2016;11:150–158.

    Article  CAS  PubMed  Google Scholar 

  51. Ou TT, Wang CJ, Lee YS, et al. Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3 ß release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells. Mol Nutr Food Res 2010;54:1781–1790.

    Article  CAS  PubMed  Google Scholar 

  52. You BR, Moon HJ, Han YH, et al. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol 2010;48:1334–1340.

    Article  CAS  PubMed  Google Scholar 

  53. You BR, Park WH. The effects of mitogen-activated protein kinase inhibitors or small interfering RNAs on gallic acid-induced HeLa cell death in relation to reactive oxygen species and glutathione. J Agr Food Chem 2011;59:763–771.

    Article  CAS  Google Scholar 

  54. Su TR, Lin JJ, Tsai CC, et al. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/ß -catenin signaling pathways in B16F10 cells. Int J Mol Sci 2013;14:20443–20458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Filipiak K, Hidalgo M, Silvan JM, et al. Dietary gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action. Food Funct 2014;5:381–389.

    Article  CAS  PubMed  Google Scholar 

  56. Kim JH, Lee BK, Lee KW, et al. Resveratrol counteracts gallic acid-induced down-regulation of gap-junction intercellular communication. J Nutr Biochem 2009;20:149–154.

    Article  CAS  PubMed  Google Scholar 

  57. Reddivari L, Vanamala J, Safe SH, et al. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr Cancer 2010;62:601–610.

    Article  CAS  PubMed  Google Scholar 

  58. Vimala S, Balaji V, Anusha T, et al. Topical application of gallic acid suppresses the 7,12-DMBA/croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol 2014;66:44–55.

    Article  CAS  Google Scholar 

  59. Agarwal C, Tyagi A, Agarwal R. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 2006;5:3294–3302.

    Article  CAS  PubMed  Google Scholar 

  60. You BR, Kim SZ, Kim SH, et al. Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol Cell Biochem 2011;357:295–303.

    Article  CAS  PubMed  Google Scholar 

  61. Liang CZ, Zhang X, Li H, et al. Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother Radio 2012;27:701–710.

    CAS  Google Scholar 

  62. Parihar S, Gupta A, Chaturvedi AK, et al. Gallic acid based steroidal phenstatin analogues for selective targeting of breast cancer cells through inhibiting tubulin polymerization. Steroids 2012;77:878–886.

    Article  CAS  PubMed  Google Scholar 

  63. Yoshioka K, Kataoka T, Hayashi T, et al. Induction of apoptosis by gallic acid in human stomach cancer KATO I and colon adenocarcinoma COLO 205 cell lines. Oncol Rep 2000;7:1221–1224.

    CAS  PubMed  Google Scholar 

  64. Subramanian AP, Jaganathan SK, Mandal M, et al. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol 2016;22:3952–3961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuo CL, Lai KC, Ma YS, et al. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF- κB, Ras and matrix metalloproteinase-2 and -9. Oncol Rep 2014;32: 355–361.

    Article  CAS  PubMed  Google Scholar 

  66. Paolini A, Curti V, Pasi F, et al. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol 2015;46:1491–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He Z, Chen AY, Rojanasakul Y, et al. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol Rep 2016;35:291–297.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang G. New uses of gallic acid patent. China patent CN 105476982A. 2016.

  69. Qi G, Ying L, Jun C, et al. Application of Sanguisorbae radix carbonisata in the prevention and treatment of tinea femoris and tinea pedis patent. China patent CN 111514203A. 2020.

  70. Chen CQ. The invention relates to a preparation method of peanut oil from mulberry for beautifying skin patent. China patent CN 107916170A. 2017.

  71. Rajalakshmi K, Devaraj H, Devaraj SN. Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food Chem Toxicol 2001;39:919–922.

    Article  CAS  PubMed  Google Scholar 

  72. Greenway F, Liu Z, Martin C, et al. Safety and efficacy of NT, an herbal supplement, in treating human obesity. Int J Obesity 2006;30:1737–1741.

    Article  CAS  Google Scholar 

  73. Choubey S, Varughese LR, Kumar V, et al. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm Pat Anal 2015;4:305–315.

    Article  CAS  PubMed  Google Scholar 

  74. Laengle S, Merigo JM, Miranda J, et al. Forty years of the European Journal of Operational Research: a bibliometric overview. Eur J Oper Res 2017;262:803–816.

    Article  Google Scholar 

  75. Chen W, Liu WJ, Geng Y, et al. Recent progress on emergy research: a bibliometric analysis. Renew Sust Energ Rev 2017;73:1051–1060.

    Article  Google Scholar 

  76. Xu WQ, Zou ZM, Pei J, et al. Longitudinal trend of global artemisinin research in chemistry subject areas (1983-2017). Bioorgan Med Chem 2018;26:5379–5387.

    Article  CAS  Google Scholar 

  77. Garfield E. The history and meaning of the journal impact factor. J Am Med Assoc 2006;295:90–93.

    Article  CAS  Google Scholar 

  78. Hirsch JE. An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship. Scientometrics 2010;85:741–754.

    Article  Google Scholar 

  79. Garcia-Mediero J, Ferruelo A, Cabrera P, et al. 428 morin, quercetin, rutin, gallic acid and resveratrol (polyphenols in mediterranean diet) inhibit MMP-9 expression and in vitro invasiveness in mb-49 (murine bladder) cancer cell line. Eur Urol Suppl 2009;8:227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Huang LF provided ideas. Jiang Y prepared and drafted the manuscript. Pei J and Duan BZ provided constructive suggestions and modified the manuscript. Zheng Y and Miao YJ performed the statistical analysis for this article. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Lin-fang Huang.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Supported by the National Natural Science Foundation of China (No. U1812403-1-1), National Science and Technology Fundamental Resources Investigation Program of China (No. 2018FY100701)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Pei, J., Zheng, Y. et al. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 28, 661–671 (2022). https://doi.org/10.1007/s11655-021-3345-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-021-3345-2

Keywords

Navigation