Skip to main content

Advertisement

Log in

Isolation of antifungal compound from Paeonia suffruticosa and its antifungal mechanism

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To isolate antifungal compound from Paeonia suffruticosa, and to find the antifungal mechanisms by observing the ultrastructural modifications of yeasts in growth phase produced by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG).

Methods

Peony (Paeonia suffruticosa) root bark (PRB) was separated by solvent extraction and purified by high performance liquid chromatography (HPLC) method using analytical and preparative reversed phase C18 column on the basis of bio-assay method. In order to investigate the antifungal mechanism of PGG, Yeasts were submitted to different concentrations [3 × minimum inhibition concentration (MIC), 0.3 × MIC] for 1 h under constant stirring at 30 °C, and transmission electron microscopy was performed.

Results

Based on the antifungal activity of PRB on Candida glabrata CBS138, the antifungal compound were isolated in ethyl acetate layer of PRB and identified as PGG by mass spectrometry, 1H nuclear magnetic resonance (NMR) analyses, with molecular weight of 940 and molecular formular as C41H32O26. Transmission electron microscopy showed that PGG degraded the cell wall envelope.

Conclusion

The results suggest that PGG may be responsible for the antifungal activity of PRB by disrupting the structure of cell wall directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 2012;36:288–305.

    Article  CAS  PubMed  Google Scholar 

  2. Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol 2011;49:396–399.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fidel PL Jr, Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 1999;12:80–96.

    PubMed Central  PubMed  Google Scholar 

  4. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 2012;50:1199–1203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yoshikawa M, Uchida E, Kawaguchi A, Kitagawa I, Yamahara J. Galloyl-oxypaeoniflorin, suffruticosides A, B, C, and D, five new antioxidative glycosides, and suffruticoside E, A paeonol glycoside, from Chinese moutan cortex. Chem Pharm Bull (Tokyo) 1992;40:2248–2250.

    Article  CAS  Google Scholar 

  6. Yoshikawa M, Ohta T, Kawaguchi A, Matsuda H. Bioactive constituents of Chinese natural medicines. V. Radical scavenging effect of Moutan Cortex. (1): Absolute stereostructures of two monoterpenes, paeonisuffrone and paeonisuffral. Chem Pharm Bull (Tokyo) 2000;48:1327–1331.

    Article  CAS  Google Scholar 

  7. Matsuda H, Ohta T, Kawaguchi A, Yoshikawa M. Bioactive constituents of chinese natural medicines. VI. Moutan cortex. (2): structures and radical scavenging effects of suffruticosides A, B, C, D, and E and galloyloxypaeoniflorin. Chem Pharm Bull (Tokyo) 2001;49:69–72.

    Article  CAS  Google Scholar 

  8. Kim SH, Kim SA, Park MK, Park YD, Na HJ, Kim HM, et al. Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-alpha. Int Immunopharmacol 2004;4:279–287.

    Article  CAS  PubMed  Google Scholar 

  9. Hirai A, Terano T, Hamazaki T, Sajiki J, Saito H, Tahara K, et al. Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thromb Res 1983;31:29–40.

    Article  CAS  PubMed  Google Scholar 

  10. Sakamoto S, Yoshino H, Shirahata Y, Shimodairo K, Okamoto R. Pharmacotherapeutic effects of kuei-chih-fuling-wan (keishi-bukuryo-gan) on human uterine myomas. Am J Chin Med 1992;20:313–317.

    Article  CAS  PubMed  Google Scholar 

  11. Harper JI, Yang SL, Evans AT, Evans FJ, Phillipson JD. Chinese herbs for eczema. Lancet 1990;335:795.

    Article  CAS  PubMed  Google Scholar 

  12. Ikuta A, Kamiya K, Satake T, Saiki Y. Triterpenoids from callus tissue cultures of paeonia species. Phytochemistry 1995;38:1203–1207.

    Article  CAS  Google Scholar 

  13. Lin HC, Ding HY, Wu YC. Two novel compounds from Paeonia suffructicosa. J Nat Prod 1998;61:343–346.

    Article  CAS  PubMed  Google Scholar 

  14. Chuang WC, Lin WC, Sheu SJ, Chiou SH, Chang HC, Chen YP. A comparative study on commercial samples of the roots of Paeonia vitchii and P. lactiflora. Plant Med 1996;62:347–351.

    Article  CAS  Google Scholar 

  15. Wang X, Cheng C, Sun Q, Li F, Liu J, Zheng C. Isolation and purification of four flavonoid constituents from the flowers of Paeonia suffruticosa by high-speed counter-current chromatography. J Chromatogr A 2005;1075:127–131.

    Article  CAS  PubMed  Google Scholar 

  16. Ishida H, Takamatsu M, Tsuji K, Kosuge T. Studies on active substances in herbs used for oketsu (“stagnant blood”) in Chinese medicine. V. On the anticoagulative principle in Moutan Cortex. Chem Pharm Bull (Tokyo) 1987;35:846–848.

    Article  CAS  Google Scholar 

  17. Institute CaLS. Reference method for broth dilution antifungal susceptibility testing of yeasts, 3rd ed. Approved standard M27-A3. ed. Clinical and Laboratory Standards Institute. Wayne: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  18. He Q, Ge ZW, Song Y, Cheng YY. Quality evaluation of cortex moutan by high performance liquid chromatography coupled with diode array detector and electrospary ionization tandem mass spectrometry. Chem Pharm Bull (Tokyo) 2006;54:1271–1275.

    Article  CAS  Google Scholar 

  19. Vandeputte P, Tronchin G, Rocher F, Renier G, Berges T, Chabasse D, et al. Hypersusceptibility to azole antifungals in a clinical isolate of Candida glabrata with reduced aerobic growth. Antimicrob Agents Chemother 2009;53:3034–3041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nishizawa M, Yamagishi T. Tannins and related compounds. Part 5. Isolation and characterization of polygalloylglucoses from Chinese gallotannin. J Chem Soc, Perkin Trans 1 1982:2963–2968.

    Google Scholar 

  21. An RB, Kim HC, Lee SH, Jeong GS, Sohn DH, Park H, et al. A new monoterpene glycoside and antibacterial monoterpene glycosides from Paeonia suffruticosa. Arch Pharm Res 2006;29:815–820.

    Article  CAS  PubMed  Google Scholar 

  22. Lee TO, Khan Z, Kim SG, Kim YH. Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani. J Microbiol Biotechnol 2008;18:1537–1543.

    CAS  PubMed  Google Scholar 

  23. Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4→8) catechin (procyanidin). J Agric Food Chem 1998;46:2590–2595.

    Article  CAS  Google Scholar 

  24. Nguyen KT, Ta P, Hoang BT, Cheng S, Hao B, Nguyen MH, et al. Characterising the post-antifungal effects of micafungin against Candida albicans, Candida glabrata, Candida parapsilosis and Candida krusei isolates. Int J Antimicrob Agents 2010;35:80–84.

    Article  CAS  PubMed  Google Scholar 

  25. Moulin-Traffort J, Steinmetz MD, Rascol JP, Regli P. Effects of Pycnoporellus fulgens (Fr.) Donk crude extract on Candida glabrata ultrastructure. Mycoses 1999;42:273–279.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Li L, Kim SH, Hagerman AE, Lu J. Anticancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res 2009;26:2066–2080.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang F, Luo SY, Ye YB, Zhao WH, Sun XG, Wang ZQ, et al. The antibacterial efficacy of an aceraceous plant [Shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol Appl Biochem 2008;51:73–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-en Wang  (王宝恩).

Additional information

Supported in part by a grant from Bureau of Personnel of Beijing (No. 100005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Wang, Be., Zhang, Sw. et al. Isolation of antifungal compound from Paeonia suffruticosa and its antifungal mechanism. Chin. J. Integr. Med. 21, 211–216 (2015). https://doi.org/10.1007/s11655-014-1805-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-014-1805-7

Keywords

Navigation