Skip to main content

Advertisement

Log in

Therapeutic effects of traditional herbal medicine on cerebral ischemia: A perspective of vascular protection

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Although many agents for acute ischemic stroke treatment have been developed from extensive preclinical studies, most have failed in clinical trials. As a result, researchers are seeking other methods or agents based on previous studies. Among the various prospective approaches, vascular protection might be the key for development of therapeutic agents for stroke and for improvements in the efficacy and safety of conventional therapies. Traditional medicines in Asian countries are based on clinical experiences and literature accumulated over thousands of years. To date, many studies have used traditional herbal medicines to prove or develop new agents based on stroke treatments mentioned in traditional medicinal theory or other clinical data. In the current review, we describe the vascular factors related to ischemic brain damage and the herbal medicines that impact these factors, including Salviae Miltiorrhizae Radix, Notoginseng Radix, and Curcumae Rhizoma, based on scientific reports and traditional medical theory. Further, we point out the problems associated with herbal medicines in stroke research and propose better methodologies to address these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79:1431–1568.

    PubMed  CAS  Google Scholar 

  2. Danton GH, Dietrich WD. The search for neuroprotective strategies in stroke. Am J Neuroradiol 2004;25:181–194.

    PubMed  Google Scholar 

  3. Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis 2008;25:268–278.

    PubMed  Google Scholar 

  4. del Zoppo GJ. Aging and the neurovascular unit. Ann N Y Acad Sci 2012;1268:127–133.

    PubMed  Google Scholar 

  5. Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke 2004;35:2220–2225.

    PubMed  CAS  Google Scholar 

  6. Maier CM, Hsieh L, Crandall T, Narasimhan P, Chan PH. A new approach for the investigation of reperfusion-related brain injury. Biochem Soc Trans 2006;34:1366–1369.

    PubMed  CAS  Google Scholar 

  7. Kamiya T, Abe K. Future neuroprotective strategies in the postthrombolysis era—neurovascular unit protection and vascular endothelial protection. Rinsho Shinkeigaku 2011;51:305–315.

    PubMed  Google Scholar 

  8. Faraci FM. Vascular protection. Stroke 2003;34:327–329.

    PubMed  Google Scholar 

  9. Li WF, Jiang JG, Chen J. Chinese medicine and its modernization demands. Arch Med Res 2008;39:246–251.

    PubMed  Google Scholar 

  10. He J, Kwon Y, Li C, Zhang XQ, Zhao JG. Several considerations in using traditional Chinese patent medicine for cerebral infarction. Chin J Integr Med 2012;18:571–574.

    PubMed  Google Scholar 

  11. Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomedicine 2002;9:478–484.

    PubMed  CAS  Google Scholar 

  12. Lee KH. Research and future trends in the pharmaceutical development of medicinal herbs from Chinese medicine. Public Health Nutr 2000;3:515–522.

    PubMed  CAS  Google Scholar 

  13. Kim H. Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurol Res 2005;27:287–301.

    PubMed  Google Scholar 

  14. World Health Organization. WHO international standard terminologies on traditional medicine in the Western Pacific Region: World Health Organization Western Pacific Region; 2007.

    Google Scholar 

  15. Ayata C, Ropper AH. Ischaemic brain oedema. J Clin Neurosci 2002;9:113–124.

    PubMed  Google Scholar 

  16. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 2007;6:258–268.

    PubMed  CAS  Google Scholar 

  17. del Zoppo GJ. Acute anti-inflammatory approaches to ischemic stroke. Ann N Y Acad Sci 2010;1207:143–148.

    PubMed  Google Scholar 

  18. Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke 1985;16:101–109.

    PubMed  CAS  Google Scholar 

  19. Fraser PA. The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 2011;51:967–977.

    PubMed  CAS  Google Scholar 

  20. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of infl ammatory mediators. FEBS J 2009;276:13–26.

    PubMed  CAS  Google Scholar 

  21. Kriz J. Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 2006;18:145–157.

    PubMed  CAS  Google Scholar 

  22. Zhang Z, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 2002;12:62–66.

    PubMed  CAS  Google Scholar 

  23. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res 2008;30:783–793.

    PubMed  Google Scholar 

  24. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 2005;50:329–339.

    PubMed  Google Scholar 

  25. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces bloodbrain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 2007;100:1108–1120.

    PubMed  CAS  Google Scholar 

  26. Zador Z, Bloch O, Yao X, Manley GT. Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res 2007;161:185–194.

    PubMed  CAS  Google Scholar 

  27. Gursoy-Ozdemir Y, Bolay H, Saribas O, Dalkara T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 2000;31:1974–1980;discussion 1981.

    PubMed  CAS  Google Scholar 

  28. Gursoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 2004;35:1449–1453.

    PubMed  Google Scholar 

  29. Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001;21:1393–1400.

    PubMed  CAS  Google Scholar 

  30. Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, et al. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 2011;15:1305–1323.

    PubMed  CAS  Google Scholar 

  31. Goussev AV, Zhang Z, Anderson DC, Chopp M. P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat. J Neurol Sci 1998;161:16–22.

    PubMed  CAS  Google Scholar 

  32. Connolly ES, Jr., Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, et al. Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 1996;97:209–216.

    PubMed  CAS  Google Scholar 

  33. Bowes MP, Zivin JA, Rothlein R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp Neurol 1993;119:215–219.

    PubMed  CAS  Google Scholar 

  34. Zhang ZG, Chopp M, Tang WX, Jiang N, Zhang RL. Postischemic treatment (2–4 h) with anti-CD11b and anti-CD18 monoclonal antibodies are neuroprotective after transient (2 h) focal cerebral ischemia in the rat. Brain Res 1995;698:79–85.

    PubMed  CAS  Google Scholar 

  35. Prestigiacomo CJ, Kim SC, Connolly ES, Jr., Liao H, Yan SF, Pinsky DJ. CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke 1999;30:1110–1117.

    PubMed  CAS  Google Scholar 

  36. Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1996;16:360–366.

    PubMed  CAS  Google Scholar 

  37. Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 2009;158:983–994.

    PubMed  CAS  Google Scholar 

  38. Gursoy-Ozdemir Y, Yemisci M, Dalkara T. Microvascular protection is essential for successful neuroprotection in stroke. J Neurochem 2012;123Suppl 2:2–11.

    PubMed  CAS  Google Scholar 

  39. Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 2010;38:376–385.

    PubMed  CAS  Google Scholar 

  40. Morancho A, Rosell A, Garcia-Bonilla L, Montaner J. Metalloproteinase and stroke infarct size: role for antiinfl ammatory treatment? Ann N Y Acad Sci 2010;1207:123–133.

    PubMed  CAS  Google Scholar 

  41. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013;14:265–277.

    PubMed  CAS  Google Scholar 

  42. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 2005;118:5691–5698.

    PubMed  CAS  Google Scholar 

  43. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    PubMed  CAS  Google Scholar 

  44. Zheng XR, Zhang SS, Yang YJ, Yin F, Wang X, Zhong L, et al. Adenoviral vector-mediated transduction of VEGF improves neural functional recovery after hypoxia-ischemic brain damage in neonatal rats. Brain Res Bull 2010;81:372–377.

    PubMed  CAS  Google Scholar 

  45. Zhao H, Bao XJ, Wang RZ, Li GL, Gao J, Ma SH, et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther 2011;22:207–215.

    PubMed  CAS  Google Scholar 

  46. Sacco RL, Chong JY, Prabhakaran S, Elkind MS. Experimental treatments for acute ischaemic stroke. Lancet 2007;369:331–341.

    PubMed  CAS  Google Scholar 

  47. Khan KM, Howe LR, Falcone DJ. Extracellular matrixinduced cyclooxygenase-2 regulates macrophage proteinase expression. J Biol Chem 2004;279:22039–22046.

    PubMed  CAS  Google Scholar 

  48. Candelario-Jalil E, Akundi RS, Bhatia HS, Lieb K, Appel K, Munoz E, et al. Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production. J Neuroimmunol 2006;174:39–51.

    PubMed  CAS  Google Scholar 

  49. Engelhorn T, Doerfler A, Kastrup A, Beaulieu C, de Crespigny A, Forsting M, et al. Decompressive craniectomy, reperfusion, or a combination for early treatment of acute “malignant” cerebral hemispheric stroke in rats? Potential mechanisms studied by MRI. Stroke 1999;30:1456–1463.

    PubMed  CAS  Google Scholar 

  50. Sucher NJ. Insights from molecular investigations of traditional Chinese herbal stroke medicines: implications for neuroprotective epilepsy therapy. Epilepsy Behav 2006;8:350–362.

    PubMed  Google Scholar 

  51. Editorial Committee of Chinese Herbal Medicine, State Administraion of Traditional Chinese Medicine, P.R., China. Chinese Herbal Medicine. Shanghai: Shanghai Science and Technology Press; 1999.

  52. Seo BI, Kwon DY, Choi HY, Lee JH, Oh MS, Bu YM. Medicinal Herbology. Seoul, Korea: Younglim-Sa; 2012.

    Google Scholar 

  53. Jung WS, Ryu JM, Kim YJ, Park SU, Jahng GH, Park JM, et al. Uhwang Chungsim won decreases blood oxygen level-dependent fMRI signal response to a motor stimulation task. Chin J Integr Med 2012 Mar 21. Epub ahead of print. DOI: 10.1007s/11655-012-1031-0.

    Google Scholar 

  54. Cho K, Noh K, Jung W, Park S, Moon S, Park J, et al. A preliminary study on the inhibitory effect of Chunghyul-dan on stroke recurrence in patients with small vessel disease. Neurol Res 2008;30:655–658.

    PubMed  Google Scholar 

  55. Ye ZG, Wang JH, Liang AH, Xue BY, Wang YS, Wang ZM, et al. Comparative studies on pharmacological effects of Angong Niuhuang Pill with its simplified prescicription. China J Chin Mater Med (Chin) 2003;28:636–639.

    Google Scholar 

  56. Wang YH. Consciousness-restoring effect of angongniuhuang pills in craniopathy. Chin J Integr Tradit West Med (Chin) 1989;9:726–727, 708–729.

    CAS  Google Scholar 

  57. Yamaguchi S, Matsubara M, Kobayashi S. Event-related brain potential changes after Choto-san administration in stroke patients with mild cognitive impairments. Psychopharmacology (Berl) 2004;171:241–249.

    CAS  Google Scholar 

  58. Goto H, Yang Q, Kita T, Hikiami H, Shimada Y, Terasawa K. Effects of Choto-san on microcirculation, serum nitric oxide and lipid peroxides in patients with asymptomatic cerebral infarction. Am J Chin Med 2001;29:83–89.

    PubMed  CAS  Google Scholar 

  59. Cai GX, Liu BY. Effect of ultra-micronized Buyang Huanwu Decoction on neurological function, quality of life, and serum vascular endothelial growth factor in patients convalescent from cerebral infarction. Chin Crit Care Med (Chin) 2010;22:591–594.

    Google Scholar 

  60. Choi Y, Kim SK, Choi IY, Ju C, Nam KW, Hwang S, et al. Amelioration of cerebral infarction and improvement of neurological defi cit by a Korean herbal medicine, modifi ed Bo-Yang-Hwan-O-Tang. J Pharm Pharmacol 2011;63:695–706.

    PubMed  CAS  Google Scholar 

  61. Kim Y-S, Moon S-K, Park S-U, Han C-H. Integrated clinical approach to stroke. Seoul, Korea: Jungdam; 2007.

    Google Scholar 

  62. Wu Y, Jiang L. Clinical study on Buyang Huanwu Decoction to the metabolic imbalance of endothelin and calcitonin gene related peptide in patients with early cerebral infarction. Chin J Integr Tradit West Med (Chin) 1998;18:396–398.

    CAS  Google Scholar 

  63. Wu PF, Zhang Z, Wang F, Chen JG. Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/ reperfusion injury. Acta Pharmacol Sin 2010;31:1523–1531.

    PubMed  CAS  Google Scholar 

  64. Gibson CL, Gray LJ, Murphy SP, Bath PM. Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab 2006;26:1103–1113.

    PubMed  CAS  Google Scholar 

  65. Carswell HV, Macrae IM, Farr TD. Complexities of oestrogen in stroke. Clin Sci (Lond) 2010;118:375–389.

    CAS  Google Scholar 

  66. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007;4:807–818.

    PubMed  CAS  Google Scholar 

  67. Al-Omar FA, Nagi MN, Abdulgadir MM, Al Joni KS, Al-Majed AA. Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus. Neurochem Res 2006;31:611–618.

    PubMed  CAS  Google Scholar 

  68. Ghoneim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 2002;46:273–279.

    PubMed  CAS  Google Scholar 

  69. Zhuang R, Lin MX, Song QY, Li J. Effects of curcumin on the expression of nuclear factor-kappaB and intercellular adhesion molecular 1 in rats with cerebral ischemia-reperfusion injury. J Nanfang Univ Med (Chin) 2009;29:1153–1155.

    CAS  Google Scholar 

  70. Lee K, Lee JS, Jang HJ, Kim SM, Chang MS, Park SH, et al. Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 2012;689:89–95.

    PubMed  CAS  Google Scholar 

  71. Adams JD, Wang R, Yang J, Lien EJ. Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin Med 2006;1:3.

    PubMed  Google Scholar 

  72. Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin 2000;21:1089–1094.

    PubMed  CAS  Google Scholar 

  73. Zhong J, Tang MK, Zhang Y, Xu QP, Zhang JT. Effect of salvianolic acid B on neural cells damage and neurogenesis after brain ischemia-reperfusion in rats. Acta Pharm Sci (Chin) 2007;42:716–721.

    CAS  Google Scholar 

  74. Zhang Y, Jiang YF, Liu ZQ, Ren LW, Wang Q, Wang WR, et al. Effect of salvianolic acid B on brain energy metabolism and hydrocephalus of cerebral ischemia in mice at different time. Acta Pharm Sci (Chin) 2007;42:1250–1253.

    CAS  Google Scholar 

  75. Tang C, Xue H, Bai C, Fu R, Wu A. The effects of tanshinone II A on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine 2010;17:1145–1149.

    PubMed  CAS  Google Scholar 

  76. Tian J, Fu F, Li G, Gao Y, Zhang Y, Meng Q, et al. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats. Phytomedicine 2009;16:726–733.

    PubMed  CAS  Google Scholar 

  77. Li Q, Han LP, Li ZH, Zhang JT, Tang MK. Salvianolic acid B alleviate the disruption of blood-brain barrier in rats after cerebral ischemia-reperfusion by inhibiting MAPK pathway. Acta Pharm Sin 2010;45:1485–1490.

    CAS  Google Scholar 

  78. Shao GF. Changes in gerbil brain tissue following cerebral ischemia and postischemic reperfusion and studies of the effects of the Chinese drugs. Chin J Nerv Mental Dis (Chin) 1992;25:347–350, 383–344.

    CAS  Google Scholar 

  79. Cheng J, Kuang P, Wu W, Zhang F. Effects of transient forebrain ischemia and Radix Salviae miltiorrhizae (RSM) on extracellular levels of monoamine neurotransmitters and metabolites in the gerbil striatum-an in vivo microdialysis study. J Tradit Chin Med 1999;19:135–140.

    PubMed  CAS  Google Scholar 

  80. Han B, Zhang X, Zhang Q, Zhao G, Wei J, Ma S, et al. Protective effects of salvianolate on microvascular fl ow in a porcine model of myocardial ischaemia and reperfusion. Arch Cardiovasc Dis 2011;104:313–324.

    PubMed  Google Scholar 

  81. Jin YC, Kim CW, Kim YM, Nizamutdinova IT, Ha YM, Kim HJ, et al. Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/ reperfusion injury in vivo. Eur J Pharmacol 2009;614:91–97.

    PubMed  CAS  Google Scholar 

  82. Jiang B, Wu W, Li M, Xu L, Sun K, Yang M, et al. Cardioprotection and matrix metalloproteinase-9 regulation of salvianolic acids on myocardial infarction in rats. Planta Med 2009;75:1286–1292.

    PubMed  CAS  Google Scholar 

  83. Fang ZY, Lin R, Yuan BX, Yang GD, Liu Y, Zhang H. Tanshinone II A downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. J Ethnopharmacol 2008;115:217–222.

    PubMed  CAS  Google Scholar 

  84. Xu S, Little PJ, Lan T, Huang Y, Le K, Wu X, et al. Tanshinone II-A attenuates and stabilizes atherosclerotic plaques in apolipoprotein-E knockout mice fed a high cholesterol diet. Arch Biochem Biophys 2011;515:72–79.

    PubMed  CAS  Google Scholar 

  85. Xu W, Yang J, Wu LM. Cardioprotective effects of tanshinone II A on myocardial ischemia injury in rats. Pharmazie 2009;64:332–336.

    PubMed  CAS  Google Scholar 

  86. Ding M, Ye TX, Zhao GR, Yuan YJ, Guo ZX. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factoralpha. Int Immunopharmacol 2005;5:1641–1651.

    PubMed  CAS  Google Scholar 

  87. Xu M, Wang YP, Luo WB, Xuan LJ. Salvianolate inhibits proliferation and endothelin release in cultured rat mesangial cells. Acta Pharmacol Sin 2001;22:629–633.

    PubMed  CAS  Google Scholar 

  88. Chang CZ, Wu SC, Kwan AL, Hwang SL, Howng SL. Magnesium lithospermate B alleviates the production of endothelin-1 through an NO-dependent mechanism and reduces experimental vasospasm in rats. Acta Neurochir (Wien) 2011;153:2211–2217.

    Google Scholar 

  89. Hong HJ, Hsu FL, Tsai SC, Lin CH, Liu JC, Chen JJ, et al. Tanshinone II A attenuates cyclic strain-induced endothelin-1 expression in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2012;39:63–68.

    PubMed  Google Scholar 

  90. Zhou Z, Wang SQ, Liu Y, Miao AD. Cryptotanshinone inhibits endothelin-1 expression and stimulates nitric oxide production in human vascular endothelial cells. Biochim Biophys Acta 2006;1760:1–9.

    PubMed  CAS  Google Scholar 

  91. Zhang D, Shu J, Wang Y. Salvia miltiorrhiza injection relieves peritoneal dialysis solution-induced injuries of peritoneal structure and function in rats. J Chin Integr Med (Chin) 2008;6:517–523.

    CAS  Google Scholar 

  92. Zhang X, Chen G, Wen L, Yang F, Shao AL, Li X, et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: In vitro and in vivo evaluation. Eur J Pharm Sci 2013;48:595–603.

    PubMed  CAS  Google Scholar 

  93. Schaffer M, Schaffer PM, Zidan J, Sela GB. Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 2011;14:588–597.

    PubMed  CAS  Google Scholar 

  94. Dohare P, Garg P, Sharma U, Jagannathan NR, Ray M. Neuroprotective efficacy and therapeutic window of curcuma oil: in rat embolic stroke model. BMC Complement Altern Med 2008;8:55.

    PubMed  Google Scholar 

  95. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 2007;561:54–62.

    PubMed  CAS  Google Scholar 

  96. Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, et al. Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 2010;35:374–379.

    PubMed  CAS  Google Scholar 

  97. Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 2009;1282:133–141.

    PubMed  CAS  Google Scholar 

  98. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 2004;74:969–985.

    PubMed  CAS  Google Scholar 

  99. Zhao J, Zhao Y, Zheng W, Lu Y, Feng G, Yu S. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res 2008;1229:224–232.

    PubMed  CAS  Google Scholar 

  100. Cao H, Li J, Li GM, Wang YQ, Zeng YM. The relationship between the effects of curcumin on cerebral ischemia/ reperfusion injury and immediately genic expressions of fos, Jun and NF-kappaB in hippocampal CA1 area and its signifi cance in gerbils. Chin J Physiol (Chin) 2007;23:184–188.

    CAS  Google Scholar 

  101. Zheng YY, Yu LS, Zhang YG, Ye GH, Yi JP. Effects of curcumin on malondialdehyde and c-fos protein in hypoxia ischemia brain tissue in rats. Chin J Forensic Med (Chin) 2009;25:6–8.

    CAS  Google Scholar 

  102. Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, et al. Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci 2011;52:1070–1077.

    PubMed  CAS  Google Scholar 

  103. Jiang H, Tian X, Guo Y, Duan W, Bu H, Li C. Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol Pharm Bull 2011;34:1194–1197.

    PubMed  CAS  Google Scholar 

  104. Rungseesantivanon S, Thenchaisri N, Ruangvejvorachai P, Patumraj S. Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition. BMC Complement Altern Med 2010;10:57.

    PubMed  Google Scholar 

  105. Mohanty I, Arya DS, Gupta SK. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complement Altern Med 2006;6:3.

    PubMed  Google Scholar 

  106. Hlavackova L, Janegova A, Ulicna O, Janega P, Cerna A, Babal P. Spice up the hypertension diet-curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutr Metab (Lond) 2011;8:72.

    CAS  Google Scholar 

  107. Xia X, Pan Y, Zhang WY, Cheng G, Kong LD. Ethanolic extracts from Curcuma longa attenuates behavioral, immune, and neuroendocrine alterations in a rat chronic mild stress model. Biol Pharm Bull 2006;29:938–944.

    PubMed  CAS  Google Scholar 

  108. Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011;12:332–347.

    PubMed  CAS  Google Scholar 

  109. Su CC, Chen GW, Lin JG, Wu LT, Chung JG. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and downregulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res 2006;26:1281–1288.

    PubMed  CAS  Google Scholar 

  110. Zhong F, Chen H, Han L, Jin Y, Wang W. Curcumin attenuates lipopolysaccharide-induced renal infl ammation. Biol Pharm Bull 2011;34:226–232.

    PubMed  CAS  Google Scholar 

  111. Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, et al. Curcumin inhibits plateletderived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 2006;26:85–90.

    PubMed  Google Scholar 

  112. Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 2013.

    Google Scholar 

  113. Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 2013;15:324–336.

    PubMed  CAS  Google Scholar 

  114. Lapchak PA. Neuroprotect ive and neurot rophic curcuminoids to treat stroke: a translational perspective. Expert Opin Investig Drugs 2011;20:13–22.

    PubMed  CAS  Google Scholar 

  115. Ng TB. Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 2006;58:1007–1019.

    PubMed  CAS  Google Scholar 

  116. Son HY, Han HS, Jung HW, Park YK. Panax notoginseng attenuates the infarct volume in rat ischemic brain and the inflammatory response of microglia. J Pharmacol Sci 2009;109:368–379.

    PubMed  CAS  Google Scholar 

  117. He W, Zhu Z. Effect of Panax notoginseng saponins on intercellular adhesion molecule-1 expression and neutrophil infi ltration in cerebral infarction tissue of rats. J Chin Med Mater (Chin) 2005;28:403–405.

    Google Scholar 

  118. Li H, Deng CQ, Chen BY, Zhang SP, Liang Y, Luo XG. Total saponins of Panax notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion. J Ethnopharmacol 2009;121:412–418.

    PubMed  CAS  Google Scholar 

  119. Yao XH, Li XJ. Protective effects and its mechanism of panaxatriol saponins isolated from Panax notoginseng on cerebral ischemia. China J Chin Mater Med (Chin) 2002;27:371–373.

    CAS  Google Scholar 

  120. Yang KH, Ge SX, Xu BY, Yan JL, Wu LO. Variation of BDNF mRNA on focalcerebral ischemia reperfusion injury in rats with notogisenoside-Rg1. J Chin Med Mater (Chin) 2007;30:313–316.

    CAS  Google Scholar 

  121. Ma L, Xiao P, Guo B, Wu J, Liang F, Dong S. Cerebral protective effects of some compounds isolated from traditional Chinese herbs. China J Chin Mater Med (Chin) 1999;24:238–239, 256-inside back cover.

    CAS  Google Scholar 

  122. Nie YX, Wang D, Zhang X. Effect of Panax notoginseng saponins injection on brain edema in intracerebral hemorrhage rats. Chin J Integr Tradit West Med (Chin) 2006;26:922–925.

    CAS  Google Scholar 

  123. Ning N, Dang X, Bai C, Zhang C, Wang K. Panax notoginsenoside produces neuroprotective effects in rat model of acute spinal cord ischemia-reperfusion injury. J Ethnopharmacol 2012;139:504–512.

    PubMed  CAS  Google Scholar 

  124. Zhu LQ, Fan JP, Huang QF, Sun SL, Gao Y, Zou YH, et al. Study on the anti-apopotosis induced by hypoxia/ hypoglycemia and reoxygenation of Panax notoginseng saponins in cultured rat hippocampal neurons. China J Chin Mater Med (Chin) 2003;28:52–55.

    CAS  Google Scholar 

  125. Jiang KY, Qian ZN. Effects of Panax notoginseng saponins on posthypoxic cell damage of neurons in vitro. Acta Pharmacol Sin 1995;16:399–402.

    CAS  Google Scholar 

  126. Zhu JR, Tao YF, Lou S, Wu ZM. Protective effects of ginsenoside Rb(3) on oxygen and glucose deprivationinduced ischemic injury in PC12 cells. Acta Pharmacol Sin 2010;31:273–280.

    PubMed  CAS  Google Scholar 

  127. Wang YH, Du GH. Ginsenoside Rg1 inhibits betasecretase activity in vitro and protects against Abetainduced cytotoxicity in PC12 cells. J Asian Nat Prod Res 2009;11:604–612.

    PubMed  CAS  Google Scholar 

  128. Choi RC, Zhu JT, Leung KW, Chu GK, Xie HQ, Chen VP, et al. A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid-beta-induced neurotoxicity in cultured neurons: signaling transduction and drug development for Alzheimer’s disease. J Alzheimers Dis 2010;19:795–811.

    PubMed  CAS  Google Scholar 

  129. Luo FC, Wang SD, Qi L, Song JY, Lv T, Bai J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J Ethnopharmacol 2011;133:448–453.

    PubMed  CAS  Google Scholar 

  130. Liu KZ, Li JB, Lu HL, Wen JK, Han M. Effects of Astragalus and saponins of Panax notoginseng on MMP-9 in patients with type 2 diabetic macroangiopathy. China J Chin Mater Med (Chin) 2004;29:264–266.

    Google Scholar 

  131. Wu L, Zhang W, Tang YH, Li H, Chen BY, Zhang GM, et al. Effect of total saponins of “Panax notoginseng root” on aortic intimal hyperplasia and the expressions of cell cycle protein and extracellular matrix in rats. Phytomedicine 2010;17:233–240.

    PubMed  CAS  Google Scholar 

  132. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, et al. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profi le and an anti-infl ammatory action. Clin Exp Pharmacol Physiol 2008;35:1238–1244.

    PubMed  CAS  Google Scholar 

  133. Sun K, Wang CS, Guo J, Horie Y, Fang SP, Wang F, et al. Protective effects of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Life Sci 2007;81:509–518.

    PubMed  CAS  Google Scholar 

  134. Wang N, Wan JB, Chan SW, Deng YH, Yu N, Zhang QW, et al. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion. Chin Med 2011;6:37.

    PubMed  CAS  Google Scholar 

  135. Pan C, Huo Y, An X, Singh G, Chen M, Yang Z, et al. Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vascul Pharmacol 2012;56:150–158.

    PubMed  CAS  Google Scholar 

  136. Liu H, Yang J, Du F, Gao X, Ma X, Huang Y, et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos 2009;37:2290–2298.

    PubMed  CAS  Google Scholar 

  137. He L, Chen X, Zhou M, Zhang D, Yang J, Yang M, et al. Radix/ rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: a randomized controlled study. Phytomedicine 2011;18:437–442.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmin Bu.

Additional information

Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2012R1A1A2008587)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, Y., Lee, K., Jung, HS. et al. Therapeutic effects of traditional herbal medicine on cerebral ischemia: A perspective of vascular protection. Chin. J. Integr. Med. 19, 804–814 (2013). https://doi.org/10.1007/s11655-013-1341-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-013-1341-2

Keywords

Navigation