Skip to main content

Advertisement

Log in

Chinese medicines and bioactive compounds for treatment of stroke

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Stroke is an important cause of mortality and morbidity worldwide but effective therapeutic strategy for the prevention of brain injury in patients with cerebral ischemia is lacking. Although tissue plasminogen activator has been used to treat stroke patients, this therapeutic strategy is confronted with ill side effects and is limited to patients within 3 h of a stroke. Due to the complexity of the events and the disappointing results from single agent trials, the combination of thrombolytic therapy and effective neural protection therapy may be an alternative strategy for patients with cerebral ischemia. Chinese medicine (CM) is the most widely practiced form of herbalism worldwide, as it is a sophisticated system of medical theory and practice that is specifically different from Western medicine. Most traditional therapeutic formulations consist of a combination of several drugs. The combination of multiple drugs is thought to maximize therapeutic efficacy by facilitating synergistic actions and preventing possible adverse effects while at the same time marking at multiple targets. CM has been labeled in ancient medicine systems as a treatment for various diseases associated with stroke. This review summarizes various CMs, bioactive compounds and their effects on cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Towfighi A, Saver JL. Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke 2011;42:2351–2355.

    PubMed  Google Scholar 

  2. Saver JL. Time is brain-quantified. Stroke 2006;37:263–266.

    PubMed  Google Scholar 

  3. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008;359:317–329.

    Google Scholar 

  4. Saqqur M, Tsivgoulis G, Molina CA, Demchuk AM, Garami Z, Barreto A, et al. Design of a PROspective multinational collaboration on reperfusion therapies for stroke (CLOTBUST-PRO). Int J Stroke 2008;3:66–72.

    PubMed  Google Scholar 

  5. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metabol 2001;21:2–14.

    CAS  Google Scholar 

  6. Barrett B, Kiefer D, Rabago D. Assessing the risks and benefits of herbal medicine: an overview of scientific evidence. Altern Ther Health Med 1999;5:40–49.

    CAS  PubMed  Google Scholar 

  7. Collaboration Group of Brain Diseases and Emergency, Administration of Traditionla Chinese Medicine, P. R. China. Criteria for diagnosis and efficacy of stroke. J Beijing Univ Chin Med (Chin) 1996;19:55–56.

    Google Scholar 

  8. Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomedcine 2002;9:478–484.

    CAS  Google Scholar 

  9. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20:84–91.

    CAS  PubMed  Google Scholar 

  10. Endres M, Dirnagl U. Neuroprotective strategies in animal and in vitro-models of neuronal damage: ischemia and stroke. In: Alzheimer C, ed. Molecular and cellular biology of neuroprotection in the CNS. New York: Kluver Academic and Landes Bioscience 2003;513,455–474.

    Google Scholar 

  11. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391–397.

    CAS  PubMed  Google Scholar 

  12. Krueger K, Busch E. Protocol of a thromboembolic stroke model in the rat: review of the experimental procedure and comparison of models. Invest Radiol 2002;37:600–608.

    PubMed  Google Scholar 

  13. Overgaard K. Thrombolytic therapy in experimental embolic stroke. Cerebrovasc Brain Metabol Rev 1994;6:257–286.

    CAS  Google Scholar 

  14. Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke 1989;20:1627–1642.

    CAS  PubMed  Google Scholar 

  15. Lee JJ, Hsu WH, Yen TL, Chang NC, Luo YJ, Hsiao G, et al. Traditional Chinese medicine, Xue-Fu-Zhu-Yu Decoction, potentiates tissue plasminogen activator against thromboembolic stroke in rats. J Ethnopharmacol 2011;34:824–830.

    Google Scholar 

  16. Wu CJ, Chen JT, Yen TL, Jayakumar T, Chou DS, Hsiao G, et al. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-Wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats. Evid Based Complement Alternat Med 2011;2011:803015.

    PubMed Central  PubMed  Google Scholar 

  17. Jayakumar T, Hsu WH, Yen TL, Luo JY, Kuo YC, Fong TH, et al. Hinokitiol, a natural tropolone derivative, offers neuroprotection from thromboembolic stroke in vivo. Evid Based Complement Alternat Med 2013;2013:840487.

    PubMed Central  PubMed  Google Scholar 

  18. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002;22:6401–6407.

    CAS  PubMed  Google Scholar 

  19. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR. Role of hypoxia-inducible factor-1 in hypoxiainduced ischemic tolerance in neonatal rat brain. Ann Neurol 2000;48:285–296.

    CAS  PubMed  Google Scholar 

  20. Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 2002;277:39728–39738.

    CAS  PubMed  Google Scholar 

  21. Shi H. Hypoxia inducible factor 1 as a therapeutic target in ischaemic stroke. Curr Med Chem 2009;16:4593–4600.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Tang JL, Liu BY, Ma KW. Traditional Chinese medicine. Lancet 2008;372:1938–1940.

    PubMed  Google Scholar 

  23. Kalesnykas G, Tuulos T, Uusitalo H, Jolkkonen J. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 2008;155:937–947.

    CAS  PubMed  Google Scholar 

  24. Calvert JW, Cahill J, Yamaguchi-Okada M, Zhang JH. Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J Appl Physiol 2006;101:853–865.

    CAS  PubMed  Google Scholar 

  25. Li L, Qu Y, Li J, Xiong Y, Mao M, Mu D. Relationship between HIF-1alpha expression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury. Brain Res 2007;1180:133–139.

    CAS  PubMed  Google Scholar 

  26. Tang JL. Some reflections on the evaluation of clinical effectiveness of Chinese medicine in China. Chin J Integr Med 2010;16:390–391.

    PubMed  Google Scholar 

  27. Tang JL, Wong TW. The need to evaluate the clinical effectiveness of traditional Chinese medicine. Hong Kong Med J 1998;4:208–210.

    PubMed  Google Scholar 

  28. Lao L, Huang Y, Feng C, Berman BM, Tan MT. Evaluating traditional Chinese medicine using modern clinical trial design and statistical methodology: application to a randomized controlled acupuncture trial. Statistics Med 2012;31:619–627.

    Google Scholar 

  29. Yen TL, Hsu CK, Lu WJ, Hsieh CY, Hsiao G, Chou DS, et al. Neuroprotective effects of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), in ischemic stroke of rats. J Agric Food Chem 2012;60:1937–1944.

    CAS  PubMed  Google Scholar 

  30. Hoppe C, Klitz W, D’Harlingue K, Cheng S, Grow M, Steiner L, et al. Confirmation of an association between the TNF(-308) promoter polymorphism and stroke risk in children with sickle cell anemia. Stroke 2007;38:2241–2246.

    CAS  PubMed  Google Scholar 

  31. Um JY, Lee JH, Joo JC, Kim KY, Lee EH, Shin T, et al. Association between tumor necrosis factor-alpha gene polymorphism and Sasang constitution in cerebral infarction. Am J Chin Med 2005;33:547–557.

    CAS  PubMed  Google Scholar 

  32. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997;94:3195–3199.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Grau AJ, Buggle F, Becher H, Zimmermann E, Spiel M, Fent T, et al. Recent bacterial and viral infection is a risk factor for cerebrovascular ischemia: clinical and biochemical studies. Neurology 1998;50:196–203.

    CAS  PubMed  Google Scholar 

  34. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685–1695.

    CAS  PubMed  Google Scholar 

  35. Vila N, Filella X, Deulofeu R, Ascaso C, Abellana R, Chamorro A. Cytokine-induced inflammation and long-term stroke functional outcome. J Neurol Sci 1999;162:185–188.

    CAS  PubMed  Google Scholar 

  36. Ferrarese C, Mascarucci P, Zoia C, Cavarretta R, Frigo M, Begni B, et al. Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab 1999;19:1004–1009.

    CAS  PubMed  Google Scholar 

  37. Skoog T, Dichtl W, Boquist S, Skoglund-Andersson C, Karpe F, Tang R, et al. Plasma tumour necrosis factoralpha and early carotid atherosclerosis in healthy middleaged men. Eur Heart J 2002;23:376–383.

    CAS  PubMed  Google Scholar 

  38. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation 2003;108:2317–2322.

    CAS  PubMed  Google Scholar 

  39. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-larginine. J Cereb Blood Flow Metab 1996;16:981–987.

    CAS  PubMed  Google Scholar 

  40. Welch G, Loscalzo J. Nitric oxide and the cardiovascular system. J Card Surg 1994;9:361–371.

    CAS  PubMed  Google Scholar 

  41. Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 1994;14:175–192.

    CAS  PubMed  Google Scholar 

  42. Zhao X, Haensel C, Araki E, Ross ME, Iadecola C. Genedosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Res 2000;872:215–218.

    CAS  PubMed  Google Scholar 

  43. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990;87:1620–1624.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitriteinduced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991;288:481–487.

    CAS  PubMed  Google Scholar 

  45. Dimmeler S, Brune B. Nitric oxide preferentially stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase compared to alcohol or lactate dehydrogenase. FEBS Lett 1993;315:21–24.

    CAS  PubMed  Google Scholar 

  46. Sorkin LS. NMDA evokes an L-NAME sensitive spinal release of glutamate and citrulline. Neuroreport 1993;4:479–482.

    CAS  PubMed  Google Scholar 

  47. Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 2000;301:173–187.

    CAS  PubMed  Google Scholar 

  48. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Expl Neurol 2003;62:329–339.

    Google Scholar 

  49. Niquet J, Wasterlain CG. Bim, Bad, and Bax: a deadly combination in epileptic seizures. J Clin Invest 2004;113:960–962.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 2004;90:1281–1289.

    CAS  PubMed  Google Scholar 

  51. Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J, Fukuuchi Y. Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience 2003;118:491–499.

    CAS  PubMed  Google Scholar 

  52. Cai YF, Fu Y, Guo JW, You JS, Wang LX, Liang WX, et al. Randomized multi-center control clinical study on acute ischemic stroke treatment with traditional Chinese medicine. J Chin Med Mater (Chin) 2007;30:1192–1195.

    Google Scholar 

  53. Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA 2008;105:4826–4831.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wu CJ, Chen JT, Yen TL, Jayakumar T, Chou DS, Hsiao G, et al. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-Wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats. Evid Based Complement Alternat Med 2011;2011:1–9.

    Google Scholar 

  55. Zhou S, Xiao P, eds. A modern practical handbook of neurology and psychosis of the integration of traditional Chinese and Western medicine. Changsha: Hunan Science and Technology Publisher; 1997:633.

    Google Scholar 

  56. Gastel B, Weng YQ. Medical journals in China. Ann Intern Med 1990;112:70–72.

    CAS  PubMed  Google Scholar 

  57. Chen GF, Yang SS, eds. Practical diagnostics and therapeutics of the integration of traditional Chinese and Western medicine. Beijing: China Medical and Phamaceutical Science and Technology Press; 1991:575.

    Google Scholar 

  58. Wang ZT, Ng TB, Xu GJ. Recent advances in pharmacognosy research in China. Gen Pharmacol 1995;26:1211–1224.

    CAS  PubMed  Google Scholar 

  59. Chen K. Progress in traditional Chinese medicine. Trends Pharmacol Sci 1995;16:182–187.

    Google Scholar 

  60. Zhong GQ, Yu ZL, Zhao HC. Protective effect of paeonol on repeated cerebral ischemia in rats. Chin Mater Med 1997;20:626–628.

    Google Scholar 

  61. Yang JM. Therapeutic effect observation of 154 cases of coronary artery disease angina using Taohongsiwutang. China J Mod Med (Chin) 2007;17:2268–2275.

    Google Scholar 

  62. Qi ZX, Du CB. Local microcirculation changes in rabbits with glucocorticoid-induced avascular necrosis of femoral head following Taohongsiwu Decoction treatment. J Clin Rehabil Tissue Eng Res 2008;12:2104–2107.

    Google Scholar 

  63. Huang Q, Qiao X, Xu X. Potential synergism and inhibitors to multiple target enzymes of Xuefu Zhuyu Decoction in cardiac disease therapeutics: a computational approach. Bioorg Med Chem Lett 2007;17:1779–1783.

    CAS  PubMed  Google Scholar 

  64. Hou XL, Li BL, Zhao L, Huang SD, Xu ZY, Zhang GX. Effects of Xuefu Zhuyu Capsule on endothelin-1 release in myocardium and vascular endothelium and nitric oxide/nitric oxide synthase system of swines after acute myocardial infarction and reperfusion. J Integr Chin Med (Chin) 2008;6:381–386.

    Google Scholar 

  65. Hoa B, Cao WD, Yang T. Intervention of Xuefu Zhuyu Oral Liquid on expression of adhesion molecule CDIIb/CD18 in neutrophils in patients with ateriosclerosis obliterans. Chin J Integr Tradit West Med (Chin) 2006;26:125–127.

    Google Scholar 

  66. Gao D, Wu LY, Jiao YH, Chen WY, Chen Y, Kaptchuk TJ, et al. The effect of Xuefu Zhuyu Decoction on in vitro endothelial progenitor cell tube formation. Chin J Integr Med 2010;16:50–53.

    CAS  PubMed  Google Scholar 

  67. Tang D, Liu Z, Zhang H, Sun M, Sui Y. Protective effects of Xuefu Zhuyu Decoction on myocardium ischemia reperfusion injury in rats. China J Chin Mater Med (Chin) 2010;35:3077–3079.

    Google Scholar 

  68. Wang HW, Liou KT, Wang YH. Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu Decoction by an integrative neurofunctional and genomic approach in ischemicstroke mice. J Ethnopharmacol 2011;138:22–33.

    PubMed  Google Scholar 

  69. Li XM, Bai XC, Qin LN, Huang H, Xiao ZJ, Gao TM. Neuroprotective effects of Buyang Huanwu Decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett 2003;346:29–32.

    CAS  PubMed  Google Scholar 

  70. Cheng WC, Yao CH, Hsieh CL, Lin JG, Lai TY, Lin CC, et al. Effects of Buyang Huanwu Decoction on peripheral nerve regeneration using silicone rubber chambers. Am J Chin Med 2001;29:423–432.

    CAS  PubMed  Google Scholar 

  71. Sun J, Bi Y, Guo L, Qi X, Zhang J, Li G, et al. Buyang Huanwu Decoction promotes growth and differentiation of neural progenitor cells: using a serum pharmacological method. J Ethnopharmacol 2007;113:199–203.

    PubMed  Google Scholar 

  72. Cai G, Liu B, Liu W, Tan X, Rong J, Chen X, et al. Buyang Huanwu Decoction can improve recovery of neurological function, reduce infarction volume, stimulate neural proliferation and modulate VEGF and Flk1 expressions in transient focal cerebral ischaemic rat brains. J Ethnopharmacol 2007;113:292–299.

    PubMed  Google Scholar 

  73. Zhang YK, Han XY, Che ZY. Effects of Buyang Huanwu Tang combined with bone marrow mesenchymal stem cell transplantation on the expression of VEGF and Ki-67 in the brain tissue of the cerebral ischemia-reperfusion model rat. J Trad Chin Med 2010;30:278–282.

    CAS  Google Scholar 

  74. Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M, Olsen TS. Outcome and time course of recovery in stroke. Part II: time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil 1995;76:406–412.

    CAS  PubMed  Google Scholar 

  75. Kitts DD. Bioactive substances in food: identification and potential uses. Can J Physiol Pharmacol 1994;72:423–424.

    CAS  PubMed  Google Scholar 

  76. Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol 2008;116:383–396.

    CAS  PubMed  Google Scholar 

  77. Xuan NT, Shumilina E, Gulbins E, Gu S, Gotz F, Lang F. Triggering of dendritic cell apoptosis by xanthohumol. Mol Nutr Food Res 2010;54(Suppl2):S214–S224.

    CAS  PubMed  Google Scholar 

  78. Gerhäuser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, et al. Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol Cancer Ther 2002;1:959–969.

    PubMed  Google Scholar 

  79. Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E. Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett 2007;246:201–209.

    CAS  PubMed  Google Scholar 

  80. Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, et al. Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 2009;113:2003–2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, et al. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 2006;20:527–529.

    CAS  PubMed  Google Scholar 

  82. Lupinacci E, Meijerink J, Vincken JP, Gabriele B, Gruppen H, Witkamp RF. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J Agric Food Chem 2009;57:7274–7281.

    CAS  PubMed  Google Scholar 

  83. Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 2011;58:153–160.

    CAS  PubMed  Google Scholar 

  84. Lee YM, Hsieh KH, Lu WJ, Chou HC, Chou DS, Lien LM, et al. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), prevents platelet activation in human platelets. Evid Based Complement Alternat Med 2012;2012:852362.

    PubMed Central  PubMed  Google Scholar 

  85. Yeung DKY, Leung SWS, Xu YC, Vanhoutte PM, Man RY. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. Eur J Pharmacol 2006;552:105–111.

    CAS  PubMed  Google Scholar 

  86. Gao Q, Yang B, Ye ZG, Wang J, Bruce IC, Xia Q. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur J Pharmacol 2007;574:179–184.

    CAS  PubMed  Google Scholar 

  87. Chen J, Xu J, Li J. Effect of puerarin on fibrinolytic activity andlipid peroxide in patients with coronary heart disease. Chin J Integr Tradit West Med (Chin) 1999;19:649–650.

    CAS  Google Scholar 

  88. Wang L, Zhao A, Wang F, Chai Q, Chai X. Protective effect of puerarin on acute cerebral ischemia in rats. Chin Mater Med J 1997;22:752–754.

    CAS  Google Scholar 

  89. Sang HF, Zhang YM, Xu LX, Wang Q, Ji GL, Wu MC. Protective effect of puerarin on spinal cord injury resulting from ischemia and reperfusion in rabbits. Fourth Milit Med Univ J (Chin) 2001;22:414–417.

    CAS  Google Scholar 

  90. Xu X, Zhang S, Zhang L, Yan W, Zheng X. The neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats. Planta Med 2005;71:585–591.

    CAS  PubMed  Google Scholar 

  91. Wang G, Zhou L, Zhang Y, Dong M, Li X, Liu J, et al. Implication of the c-Jun-NH2-terminal kinase pathway in the neuroprotective effect of puerarin against 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in PC-12 cells. Neurosci Lett 2011;487:88–93.

    CAS  PubMed  Google Scholar 

  92. Shengmiao C, Chunshun Z, Zhonggui H. Uptaking characteristics of puerarin in Caco-2 model system. Chin Tradit Herbal Drugs (Chin) 2007;38:836–839.

    Google Scholar 

  93. Zhao LX, Liu AC, Yu SW, Wang ZX, Lin XQ, Zhai GX, et al. The permeability of puerarin loaded poly (butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. Biol Pharm Bull 2013;36:1263–1270.

    CAS  PubMed  Google Scholar 

  94. Chang Y, Hsieh CY, Peng ZA, Yen TL, Hsiao G, Chou DS, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. J Biomed Sci 2009;16:1–13.

    Google Scholar 

  95. Roxas M, Jurenka J. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev 2007;12:25–48.

    PubMed  Google Scholar 

  96. Iruretagoyena MI, Sepulveda SE, Lezana JP, Hermoso M, Bronfman M, Gutierrez MA, et al. Inhibition of nuclear factorkappa B enhances the capacity of immature dendritic cells to induce antigen-specific tolerance in experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther 2006;318:59–67.

    CAS  PubMed  Google Scholar 

  97. Li YD, Ye BQ, Zheng SX, Wang JT, Wang JG, Chen M, et al. NF-kappaB transcription factor p50 critically regulates tissue factor in deep vein thrombosis. J Biol Chem 2009;284:4473–4483.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Bao Z, Guan S, Cheng C, Wu S, Wong SH, Kemeny DM, et al. A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway. Am J Respir Crit Care Med 2009;179:657–665.

    CAS  PubMed  Google Scholar 

  99. Varma A, Padh H, Shrivastava N. Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med 2009;2011:2011:815390.

    Google Scholar 

  100. Lin TP, Chen SY, Duh PD, Chang LK, Liu YN. Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol Pharm Bull 2008;31:2018–2023.

    CAS  PubMed  Google Scholar 

  101. Jiang X, Yu P, Jiang J, Zhang Z, Wang Z, Yang Z, et al. Synthesis and evaluation of antibacterial activities of andrographolide analogues. Eur J Med Chem 2009;44:2936–2943.

    CAS  PubMed  Google Scholar 

  102. Zhang Z, Jiang J, Yu P, Zeng X, Larrick JW, Wang Y. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J Transl Med 2009b;7:62.

    PubMed Central  PubMed  Google Scholar 

  103. Akowuah GA, Zhari I, Mariam A, Yam MF. Absorption of andrographolides from andrographis paniculata and its effect on CCl4-induced oxidative stress in rats. Food Chem Toxicol 2009;47:2321–2326.

    CAS  PubMed  Google Scholar 

  104. Suebsasana S, Pongnaratorn P, Sattayasai J, Arkaravichien T, Tiamkao S, Aromdee C. Analgesic, antipyretic, antiinflammatory and toxic effects of andrographolide derivatives in experimental animals. Arch Pharm Res 2009;32:1191–1200.

    CAS  PubMed  Google Scholar 

  105. Sulaiman MR, Zakaria ZA, Abdul Rahman A, Mohamad AS, Desa MN, Stanslas J, et al. Antinociceptive and antiedematogenic activities of andrographolide isolated from Andrographis paniculata in animal models. Biol Res Nurs 2010;11:293–301.

    CAS  PubMed  Google Scholar 

  106. Hsieh CY, Hsu MJ, Hsiao G, Wang YH, Huang CW, Chen SW, et al. Andrographolide enhances NF-{kappa}B subunit p65 Ser536 dephosphorylation through activation of protein phosphatase 2A (PP2A) in vascular smooth muscle cells. J Biol Chem 2011;286:5942–5955.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Lu WJ, Lee JJ, Chou DS, Jayakumar T, Fong TH, Hsiao G, et al. A novel role of andrographolide, an NF-kappa B inhibitor, on inhibition of platelet activation: the pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP. J Mol Med 2011;12:1263–1271.

    Google Scholar 

  108. Lu WJ, Lin KH, Hsu MJ, Chou DS, Hsiao G, Sheu JR. Suppression of NF-kappaB signaling by andrographolide with a novel mechanism in human platelets: regulatory roles of the p38 MAPK-hydroxyl radical-ERK2 cascade. Biochem Pharmacol 2012;84:914–924.

    CAS  PubMed  Google Scholar 

  109. Chen JH, Hsiao G, Lee AR, Wu CC, Yen MH. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway. Biochem Pharmacol 2004;67:1337–1345.

    CAS  PubMed  Google Scholar 

  110. Chao CY, Lii CK, Tsai IT, Li CC, Liu KL, Tsai TW, et al. Andrographolide inhibits ICAM-1 expression and NFkappaB activation in TNF-alpha-treated EA.hy926 cells. J Agric Food Chem 2011;59:5263–5271.

    CAS  PubMed  Google Scholar 

  111. Woo AY, Waye MM, Tsui SK, Yeung ST, Cheng CH. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther 2008;325:226–235.

    CAS  PubMed  Google Scholar 

  112. Lu W. Prospect for study on treatment of AIDS with traditional Chinese medicine. J Tradit Chin Med 1995;15:3–9.

    CAS  PubMed  Google Scholar 

  113. Chan SJ, Wong WS, Wong PT, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 2010;161:668–679.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Yen TL, Hsu WH, Huang SK, Lu WJ, Chang CC, Lien LM, et al. A novel bioactivity of andrographolide from andrographis paniculata on cerebral ischemia/reperfusioninduced brain injury through induction of cerebral endothelial cell apoptosis. Pharm Biol 2013;51:1150–1157.

    CAS  PubMed  Google Scholar 

  115. Chern CM, Liou KT, Wang YH, Liao JF, Yen JC, Shen YC. Andrographolide inhibits PI3K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ischemia-induced oxidative brain injury. Planta Med 2011;77:1669–1679.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joen-rong Sheu  (许准榕).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, T., Elizebeth, A.R., Yen, Tl. et al. Chinese medicines and bioactive compounds for treatment of stroke. Chin. J. Integr. Med. 21, 90–101 (2015). https://doi.org/10.1007/s11655-014-1782-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-014-1782-2

Keywords

Navigation