Skip to main content
Log in

Maßgeschneiderte Chirurgie in der Behandlung gastroösophagealer Tumoren

Tailored surgery in the treatment of gastroesophageal cancer

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Die chirurgischen Optionen und insbesondere die perioperativen Therapien haben sich bei gastroösophagealen Karzinomen erheblich weiterentwickelt. Durch kurative multimodale Therapiekonzepte bei lokal fortgeschrittenen Karzinomen kann mittlerweile eine 5‑Jahres-Überlebensrate von nahezu 50 % erreicht werden. In Tumorboards und chirurgischen Fallbesprechungen stellt sich daher vermehrt die Frage, welche Art der Therapie individuellen Patienten mit ihren Vorerkrankungen die besten onkologischen und funktionellen Ergebnisse ermöglicht. Dabei gilt es, sorgfältig abzuwägen, ob in Zukunft auch organerhaltende Therapien in Betracht kommen oder in welcher Form minimal-invasive oder robotische Operationen Vorteile bieten können. Gleichzeitig verschieben sich gegenwärtig die Grenzen der operativen und onkologischen Therapie, um auch kurative Behandlungen für vorerkrankte Patienten oder Patienten mit einer oligometastatischen Erkrankung zu ermöglichen. Mit der Integration künstlicher Intelligenz in Entscheidungsprozesse stehen zunehmend neue Möglichkeiten der Informationsverarbeitung zur Verfügung, um in Zukunft noch mehr Daten in unsere Entscheidungsfindung einbeziehen zu können.

Abstract

The surgical options and particularly perioperative treatment, have significantly advanced in the case of gastroesophageal cancer. This progress enables a 5-year survival rate of nearly 50% to be achieved through curative multimodal treatment concepts for locally advanced cancer. Therefore, in tumor boards and surgical case discussions the question increasingly arises regarding the type of treatment that provides optimal oncological and functional outcomes for individual patients with pre-existing diseases. It is therefore essential to carefully assess whether organ-preserving treatment might also be considered in the future or in what way minimally invasive or robotic surgery can offer advantages. Simultaneously, the boundaries of surgical and oncological treatment are currently being shifted in order to enable curative forms of treatment for patients with pre-existing conditions or those with oligometastatic diseases. With the integration of artificial intelligence into decision-making processes, new possibilities for information processing are increasingly becoming available to incorporate even more data into making decisions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Nimptsch U et al (2018) Hospital volume, in-hospital mortality, and failure to rescue in esophageal surgery. Dtsch Ärztebl Int 115(47):793–800

    PubMed  PubMed Central  Google Scholar 

  2. Lang H, Grimminger PP, Meyer HJ (2022) Minimum case volume regulations in surgery from the perspective of the specialist society (DGCH) : balancing act between science, politics, treatment reality and a range of other aspects. Chirurg 93(4):342–348

    Article  PubMed  PubMed Central  Google Scholar 

  3. Voeten DM et al (2021) Overall volume trends in esophageal cancer surgery results from the Dutch upper gastrointestinal cancer audit. Ann Surg 274(3):449–458

    Article  PubMed  Google Scholar 

  4. Nienhueser H et al (2015) Surgery of gastric cancer and esophageal cancer: does age matter? J Surg Oncol 112(4):387–395

    Article  PubMed  Google Scholar 

  5. Farrow NE et al (2021) Impact of age on surgical outcomes for locally advanced esophageal cancer. Ann Thorac Surg 111(3):996–1003

    Article  PubMed  Google Scholar 

  6. committee A et al (2023) American Society for Gastrointestinal Endoscopy guideline on endoscopic submucosal dissection for the management of early esophageal and gastric cancers: summary and recommendations. Gastrointest Endosc 98(3):271–284

    Article  Google Scholar 

  7. van Hagen P et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366(22):2074–2084

    Article  PubMed  Google Scholar 

  8. Kelly RJ et al (2021) Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med 384(13):1191–1203

    Article  CAS  PubMed  Google Scholar 

  9. Hoeppner J et al (2016) ESOPEC: prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 16:503

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cunningham D et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355(1):11–20

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds JV et al (2023) Trimodality therapy versus perioperative chemotherapy in the management of locally advanced adenocarcinoma of the oesophagus and oesophagogastric junction (Neo-AEGIS): an open-label, randomised, phase 3 trial. Lancet Gastroenterol Hepatol 8(11):1015–1027

    Article  PubMed  PubMed Central  Google Scholar 

  12. Al-Batran SE et al (2019) Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393(10184):1948–1957

    Article  PubMed  Google Scholar 

  13. Gebauer F et al (2023) Long-term postsurgical outcomes of neoadjuvant chemoradiation (CROSS) versus chemotherapy (FLOT) for multimodal treatment of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol 30(12):7422–7433

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lorenzen S et al (2024) Perioperative atezolizumab plus fluorouracil, leucovorin, oxaliplatin, and docetaxel for resectable esophagogastric cancer: interim results from the randomized, multicenter, phase II/III DANTE/IKF-s633 trial. J Clin Oncol 42(4):410–420

    Article  CAS  PubMed  Google Scholar 

  15. Jung JO et al (2023) Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of esophageal adenocarcinoma. Preprints with THE LANCET

    Book  Google Scholar 

  16. Tolkach Y et al (2023) Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study. Lancet Digit Health 5(5):e265–e275

    Article  CAS  PubMed  Google Scholar 

  17. Weis J et al (2021) Study protocol of a prospective multicenter study on patient participation for the clinical trial: surgery as needed versus surgery on principle in post-neoadjuvant complete tumor response of esophageal cancer (ESORES). Front Oncol 11:789155

    Article  PubMed  Google Scholar 

  18. Noordman BJ et al (2018) Detection of residual disease after neoadjuvant chemoradiotherapy for oesophageal cancer (preSANO): a prospective multicentre, diagnostic cohort study. Lancet Oncol 19(7):965–974

    Article  PubMed  Google Scholar 

  19. Eyck BM et al (2021) Updated protocol of the SANO trial: a stepped-wedge cluster randomised trial comparing surgery with active surveillance after neoadjuvant chemoradiotherapy for oesophageal cancer. Trials 22(1):345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noordman BJ et al (2018) Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: a stepped-wedge cluster randomised trial. BMC Cancer 18(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  21. van der Zijden CJ et al (2023) A prospective cohort study on active surveillance after neoadjuvant chemoradiotherapy for esophageal cancer: protocol of surgery as needed for oesophageal cancer‑2. BMC Cancer 23(1):327

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mariette C et al (2019) Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med 380(2):152–162

    Article  PubMed  Google Scholar 

  23. Muller-Stich BP et al (2021) Meta-analysis of randomized controlled trials and individual patient data comparing minimally invasive with open oesophagectomy for cancer. Br J Surg 108(9):1026–1033

    Article  CAS  PubMed  Google Scholar 

  24. Nickel F et al (2021) Minimally Invasive Versus open AbdominoThoracic Esophagectomy for esophageal carcinoma (MIVATE) – study protocol for a randomized controlled trial DRKS00016773. Trials 22(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kalff MC, van Berge Henegouwen MI, Gisbertz SS (2021) Textbook outcome for esophageal cancer surgery: an international consensus-based update of a quality measure. Dis Esophagus 34(7)

  26. Babic B et al (2022) Robot-assisted minimally invasive esophagectomy (RAMIE) vs. hybrid minimally invasive esophagectomy: propensity score matched short-term outcome analysis of a European high-volume center. Surg Endosc 36(10):7747–7755

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kalff MC et al (2021) The association of textbook outcome and long-term survival after esophagectomy for esophageal cancer. Ann Thorac Surg 112(4):1134–1141

    Article  PubMed  Google Scholar 

  28. Levy J et al (2022) Textbook outcome and survival in patients with gastric cancer: an analysis of the population registry of esophageal and stomach tumours in ontario (PRESTO). Ann Surg 275(1):140–148

    Article  PubMed  Google Scholar 

  29. Kingma BF et al (2022) Worldwide Techniques and Outcomes in Robot-assisted Minimally Invasive Esophagectomy (RAMIE): results from the multicenter international registry. Ann Surg 276(5):e386–e392

    Article  PubMed  Google Scholar 

  30. Klotz R et al (2023) Overall morbidity after total minimally invasive keyhole oesophagectomy versus hybrid oesophagectomy (the MICkey trial): study protocol for a multicentre randomized controlled trial. Trials 24(1):175

    Article  PubMed  PubMed Central  Google Scholar 

  31. Claassen L et al (2022) Learning curves of ivor lewis totally minimally invasive esophagectomy by hospital and surgeon characteristics: a retrospective multinational cohort study. Ann Surg 275(5):911–918

    Article  PubMed  Google Scholar 

  32. Chen F et al (2022) Impact of preoperative sarcopenia on postoperative complications and survival outcomes of patients with esophageal cancer: a meta-analysis of cohort studies. Dis Esophagus 35(9)

  33. Wang PY et al (2020) Sarcopenia and short-term outcomes after esophagectomy: a meta-analysis. Ann Surg Oncol 27(8):3041–3051

    Article  PubMed  Google Scholar 

  34. Merboth F et al (2023) Robotic esophagectomy compared with open esophagectomy reduces sarcopenia within the first postoperative year: a propensity score-matched analysis. J Thorac Oncol 18(2):232–244

    Article  PubMed  Google Scholar 

  35. Hachey KJ et al (2016) Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer. J Thorac Cardiovasc Surg 152(2):546–554

    Article  PubMed  PubMed Central  Google Scholar 

  36. Muller DT et al (2023) Mapping the lymphatic drainage pattern of esophageal cancer with near-infrared fluorescent imaging during Robotic Assisted Minimally Invasive Ivor Lewis Esophagectomy (RAMIE)-first results of the prospective ESOMAP feasibility trial. Cancers 15(8)

  37. Blank S et al (2018) Surgical strategies in true adenocarcinoma of the esophagogastric junction (AEG II): thoracoabdominal or abdominal approach? Gastric Cancer 21(2):303–314

    Article  PubMed  Google Scholar 

  38. Heger P et al (2019) Thoracoabdominal versus transhiatal surgical approaches for adenocarcinoma of the esophagogastric junction–a systematic review and meta-analysis. Langenbecks Arch Surg 404(1):103–113

    Article  PubMed  Google Scholar 

  39. Wirsik NM et al (2023) Impact of the surgical approach for Neoadjuvantly treated gastroesophageal junction type II tumors: a multinational, high-volume center retrospective cohort analysis. Ann Surg 278(5):683–691

    Article  PubMed  Google Scholar 

  40. Leers JM et al (2020) The CARDIA-trial protocol: a multinational, prospective, randomized, clinical trial comparing transthoracic esophagectomy with transhiatal extended gastrectomy in adenocarcinoma of the gastroesophageal junction (GEJ) type II. BMC Cancer 20(1):781

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jung JO et al (2023) Prediction of postoperative complications after oesophagectomy using machine-learning methods. Br J Surg 110(10):1361–1366

    Article  PubMed  Google Scholar 

  42. Chang DH et al (2018) Calcification score versus arterial stenosis grading: comparison of two CT-based methods for risk assessment of anastomotic leakage after esophagectomy and gastric pull-up. Ther Clin Risk Manag 14:721–727

    Article  PubMed  PubMed Central  Google Scholar 

  43. Borggreve AS et al (2018) Generalized cardiovascular disease on a preoperative CT scan is predictive for anastomotic leakage after esophagectomy. Eur J Surg Oncol 44(5):587–593

    Article  PubMed  Google Scholar 

  44. Heger P et al (2017) Gastric preconditioning in advance of esophageal resection-systematic review and meta-analysis. J Gastrointest Surg 21(9):1523–1532

    Article  PubMed  Google Scholar 

  45. Veen AV et al (2022) The ISCON-trial protocol: laparoscopic ischemic conditioning prior to esophagectomy in patients with esophageal cancer and arterial calcifications. BMC Cancer 22(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Groot E et al (2023) Laparoscopic ischemic conditioning prior esophagectomy in selected patients: the ISCON trial. Dis Esophagus 36(11)

  47. Schiffmann LM et al (2023) Laparoscopic ischemic conditioning of the stomach prior to esophagectomy induces gastric neo-angiogenesis. Eur J Surg Oncol 49(11):107096

    Article  CAS  PubMed  Google Scholar 

  48. Jung JO et al (2020) Oligometastatic Gastroesophageal Adenocarcinoma: molecular pathophysiology and current therapeutic approach. Int J Mol Sci 21(3)

  49. Al-Batran SE et al (2017) Effect of neoadjuvant chemotherapy followed by surgical resection on survival in patients with limited metastatic gastric or gastroesophageal junction cancer: the AIO-FLOT3 trial. JAMA Oncol 3(9):1237–1244

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schmidt T et al (2015) Surgery in oesophago-gastric cancer with metastatic disease: treatment, prognosis and preoperative patient selection. Eur J Surg Oncol 41(10):1340–1347

    Article  CAS  PubMed  Google Scholar 

  51. Kroese TE et al (2023) Definition, diagnosis and treatment of oligometastatic oesophagogastric cancer: a Delphi consensus study in Europe. Eur J Cancer 185:28–39

    Article  PubMed  Google Scholar 

  52. Kroese TE et al (2022) Definition of oligometastatic esophagogastric cancer and impact of local oligometastasis-directed treatment: a systematic review and meta-analysis. Eur J Cancer 166:254–269

    Article  CAS  PubMed  Google Scholar 

  53. Kroese TE et al (2022) Metastasectomy or stereotactic body radiation therapy with or without systemic therapy for oligometastatic esophagogastric cancer. Ann Surg Oncol 29(8):4848–4857

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kroese TE et al (2022) Stereotactic radiotherapy or metastasectomy for oligometastatic esophagogastric cancer: a nationwide population-based cohort study. Clin Transl Radiat Oncol 37:109–115

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kroese TE et al (2022) Incidence and survival of patients with oligometastatic esophagogastric cancer: A multicenter cohort study. Radiother Oncol 173:269–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmidt.

Ethics declarations

Interessenkonflikt

T. Schmidt, H.F. Fuchs, M.N. Thomas, D.T. Müller, L. Lukomski, M. Scholz und C.J. Bruns geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Stephan Schmitz, Köln

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Dieser Beitrag erschien zuerst in Chirurgie 2024 https://doi.org/10.1007/s00104-024-02056-3

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, T., Fuchs, H.F., Thomas, M.N. et al. Maßgeschneiderte Chirurgie in der Behandlung gastroösophagealer Tumoren. best practice onkologie 19, 122–129 (2024). https://doi.org/10.1007/s11654-024-00566-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-024-00566-4

Schlüsselwörter

Keywords

Navigation