Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Machine Intelligence Research
  3. Article

A Review of Predictive and Contrastive Self-supervised Learning for Medical Images

  • Review
  • Open Access
  • Published: 03 June 2023
  • volume 20, pages 483–513 (2023)
Download PDF

You have full access to this open access article

Machine Intelligence Research Aims and scope Submit manuscript
A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
Download PDF
  • Wei-Chien Wang  ORCID: orcid.org/0000-0002-3255-72121,
  • Euijoon Ahn  ORCID: orcid.org/0000-0001-7027-067X2,
  • Dagan Feng  ORCID: orcid.org/0000-0002-3381-214X1 &
  • …
  • Jinman Kim  ORCID: orcid.org/0000-0001-5960-10601 
  • 257 Accesses

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

Over the last decade, supervised deep learning on manually annotated big data has been progressing significantly on computer vision tasks. But, the application of deep learning in medical image analysis is limited by the scarcity of high-quality annotated medical imaging data. An emerging solution is self-supervised learning (SSL), among which contrastive SSL is the most successful approach to rivalling or outperforming supervised learning. This review investigates several state-of-the-art contrastive SSL algorithms originally on natural images as well as their adaptations for medical images, and concludes by discussing recent advances, current limitations, and future directions in applying contrastive SSL in the medical domain.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, vol.521, no. 7553, pp. 436–444, 2015. DOI: https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  2. S. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach, 3rd ed., Upper Saddle River, USA: Prentice Hall, 2010.

    MATH  Google Scholar 

  3. X. Liu, F. J. Zhang, Z. Y. Hou, L. Mian, Z. Y. Wang, J. Zhang, J. Tang. Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering, vol.35, no. 1, pp. 857–876, 2023. DOI: https://doi.org/10.1109/TKDE.2021.3090866.

    Google Scholar 

  4. X. Yan, S. Z. Gilani, M. T. Feng, L. Zhang, H. L. Qin, A. Mian. Self-supervised learning to detect key frames in videos. Sensors, vol. 20, no. 23, Article number 6941, 2020. DOI: https://doi.org/10.3390/s20236941.

    Google Scholar 

  5. S. L. Happy, A. Dantcheva, F. Bremond. A Weakly Supervised learning technique for classifying facial expressions. Pattern Recognition Letters, vol. 128, pp. 162–168, 2019. DOI: https://doi.org/10.1016/j.patrec.2019.08.025.

    Google Scholar 

  6. I. B. Senkyire, Z. Liu. Supervised and semi-supervised methods for abdominal organ segmentation: A review. International Journal of Automation and Computing, vol.18, no. 6, pp. 887–914, 2021. DOI: https://doi.org/10.1007/s11633-021-1313-0.

    Google Scholar 

  7. K. Kumar, A. C. S. Rao. Breast cancer classification of image using convolutional neural network. In Proceedings of the 4th International Conference on Recent Advances in Information Technology, IEEE, Dhanbad, India, pp. 1–6, 2018. DOI: https://doi.org/10.1109/RAIT.2018.8389034.

    Google Scholar 

  8. R. Sarki, K. Ahmed, H. Wang, Y. C. Zhang, K. T Wang. Automated detection of COVID-19 through convolutional neural network using chest X-ray images. PLoS One, vol.17, no. 1, Article number e0262052, 2022. DOI: https://doi.org/10.1371/journal.pone.0262052.

    Google Scholar 

  9. M. Cullell-Dalmau, S. Noé, M. Otero-Viñas, I. Meić, M. Manzo. Convolutional neural network for skin lesion classification: Understanding the fundamentals through hands-on learning. Frontiers in Medicine, vol. 8, Article number 644327, 2021. DOI: https://doi.org/10.3389/fmed.2021.644327.

  10. M. Raghu, C. Y. Zhang, J. M. Kleinberg, S. Bengio. Transfusion: Understanding transfer learning for medical imaging. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 301, 2019. DOI: https://doi.org/10.5555/3454287.3454588.

  11. N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, J. M. Liang. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, vol.35, no. 5, pp. 1299–1312, 2016. DOI: https://doi.org/10.1109/TMI.2016.2535302.

    Google Scholar 

  12. H. C. Shin, H. R. Roth, M. C. Gao, L. Lu, Z. Y. Xu, I. Nogues, J. H. Yao, D. Mollura, R. M. Summers. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, vol.35, no.5, pp. 1285–1298, 2016. DOI: https://doi.org/10.1109/TMI.2016.2528162.

    Google Scholar 

  13. V. Cheplygina, M. de Bruijne, J. P. W. Pluim. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medical Image Analysis, vol. 54, pp. 280–296, 2019. DOI: https://doi.org/10.1016/j.media.2019.03.009.

    Google Scholar 

  14. C. P. Wilkinson, F. L. Ferris III, R. E. Klei, P. P. Lee, C. D. Agardh, M. Davis, D. Dills, A. Kampik, R. Pararajasegaram, J. T. Verdaguer. Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, vol. 110, no. 9, pp. 1677–1682, 2003. DOI: https://doi.org/10.1016/S0161-6420(03)00475-5.

    Google Scholar 

  15. P. Khosravi, E. Kazemi, Q. S. Zhan, M. Toschi, J. Malmsten, C. Hickman, M. Meseguer, Z. Rosenwaks, O. Elemento, N. Zaninovic, I. Hajirasouliha. Robust automated assessment of human blastocyst quality using deep learning. bioRxiv, 2018.

  16. V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, D. R. Webster. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, vol.316, no. 22, pp. 2402–2410, 2016. DOI: https://doi.org/10.1001/jama.2016.17216.

    Google Scholar 

  17. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, A. Y. Ng. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. [Online], Available: https://arxiv.org/abs/1711.05225, 2017.

  18. K. M. He, R. Girshick, P. Dollar. Rethinking ImageNet pre-training. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Republic of Korea, pp. 4917–4926, 2019. DOI: https://doi.org/10.1109/ICCV.2019.00502.

    Google Scholar 

  19. K. M. He, H. Q. Fan, Y. X. Wu, S. N. Xie, R. Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 9726–9735, 2020. DOI: https://doi.org/10.1109/CVPR-42600.2020.00975.

    Google Scholar 

  20. T. Chen, S. Kornblith, M. Norouzi, G. Hinton. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, Article number 149, 2020. DOI: https://doi.org/10.5555/3524938.3525087.

  21. Y. LeCun. Self-supervised learning. In Proceedings of the 34th A A AI Conference on Artificial Intelligence Invited Speaker Program, New York, USA, 2020. [Online], Available: https://aaai.org/conference/aaai/aaai-20/invited-speakers/.

  22. J. B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, M. Valko. Bootstrap your own latent: A new approach to self-supervised learning. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, Canada, 2020.

  23. I. Misra, L. van der Maaten. Self-supervised learning of pretext-invariant representations. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 6706–6716, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00674.

    Google Scholar 

  24. A. Newell, J. Deng. How useful is self-supervised pretraining for visual tasks? In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 7343–7352, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00737.

    Google Scholar 

  25. A. Tendle, M. R. Hasan. A study of the generalizability of self-supervised representations. Machine Learning with Applications, vol.6, Article number 100124, 2021. DOI: https://doi.org/10.1016/j.mlwa.2021.100124.

  26. K. Kotar, G. Ilharco, L. Schmidt, K. Ehsani, R. Mottaghi. Contrasting contrastive self-supervised representation learning pipelines. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 9929–9939, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00980.

    Google Scholar 

  27. P. Wang, K. Han, X. S. Wei, L. Zhang, L. Wang. Contrastive learning based hybrid networks for long-tailed image classification. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 943–952, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.00100.

    Google Scholar 

  28. L. L. Jing, Y. L. Tian. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.43, no. 11, pp. 4037–4058, 2021. DOI: https://doi.org/10.1109/tpami.2020.2992393.

    Google Scholar 

  29. X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, X. J. Huang. Pre-trained models for natural language processing: A survey. Science China Technological Sciences, vol.63, no. 10, pp. 1872–1897, 2020. DOI: https://doi.org/10.1007/s11431-020-1647-3.

    Google Scholar 

  30. A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, F. Makedon. A survey on contrastive self-supervised learning. Technologies, vol.9, no. 1, Article number 2, 2021. DOI: https://doi.org/10.3390/technologies9010002.

    Google Scholar 

  31. S. Shurrab, R. Duwairi. Self-supervised learning methods and applications in medical imaging analysis: A survey. PeerJ Computer Science, vol.8, Article number e1045, 2022. DOI: https://doi.org/10.7717/peerj-cs.1045.

  32. C. Y. Zhang, Y. Gu. Dive into self-supervised learning for medical image analysis: Data, models and tasks. [Online], Available: https://arxiv.org/abs/2209.12157, 2022.

  33. C. Doersch, A. Gupta, A. A. Efros. Unsupervised visual representation learning by context prediction. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 1422–1430, 2015. DOI: https://doi.org/10.1109/ICCV.2015.167.

  34. M. Noroozi, P. Favaro. Unsupervised learning of visual representations by solving Jigsaw puzzles. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 69–84, 2016. DOI: https://doi.org/10.1007/978-3-319-46466-4_5.

    Google Scholar 

  35. S. Gidaris, P. Singh, N. Komodakis. Unsupervised representation learning by predicting image rotations. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, Canada, 2018.

  36. J. N. Li, J. Q. Liu, Y. K. Wong, S. Nishimura, M. S. Kankanhalli. Self-supervised representation learning using 360° data. In Proceedings of the 27th ACM International Conference on Multimedia, ACM, Nice, France, pp. 998–1006, 2019. DOI: https://doi.org/10.1145/3343031.3351019.

    Google Scholar 

  37. H. Lee, S. J. Hwang, J. Shin. Rethinking data augmentation: Self-supervision and self-distillation. [Online], Available: https://arxiv.org/abs/1910.05872, 2019.

  38. L. Ericsson, H. Gouk, C. C. Loy, T. M. Hospédales. Self-supervised representation learning: Introduction, advances, and challenges. IEEE Signal Processing Magazine, vol.39, no. 3, pp. 42–46, 2022. DOI: https://doi.org/10.1109/MSP.2021.3134634.

    Google Scholar 

  39. Sequential data. In Encyclopedia of Machine Learning, C. Sammut, G. I. Webb, Eds., Boston, USA: Springer, 2011. [Online], Available: https://link.springer.com/reference-workentry/10.1007/978-0-387-30164-8_754.

  40. Z. J. Yue, S. Ding, L. Zhao, Y. T. Zhang, Z. H. Cao, M. Tanveer, A. Jolfaei, X. Zheng. Privacy-preserving time-series medical images analysis using a hybrid deep learning framework. ACM Transactions on Internet Technology, vol.21, no.3, Article number 57, 2021. DOI: https://doi.org/10.1145/3383779.

    Google Scholar 

  41. F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 815–823, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7298682.

  42. M. Gutmann, A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, pp. 297–304, 2010.

  43. A. van den Oord, Y. Z. Li, O. Vinyals. Representation learning with contrastive predictive coding. [Online], Available: https://arxiv.org/abs/1807.03748, 2018.

  44. M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, M Lucie: On mutual information maximization for representation learning. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.

  45. M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, D. Hjelm. Mutual information neural estimation. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, pp. 531–540, 2018.

  46. R. Linsker. Self-organization in a perceptual network. Computer, vol.21, no.3, pp. 105–117, 1988. DOI: https://doi.org/10.1109/2.36.

    Google Scholar 

  47. T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient estimation of word representations in vector space. In Proceedings of the 1st International Conference on Learning Representations, Scottsdale, USA, 2013.

  48. R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, A. Trischler, Y. Bengio. Learning deep representations by mutual information estimation and maximization. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, USA, 2019.

  49. Y. L. Tian, D. Krishnan, P. Isola. Contrastive multiview coding. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 776–794, 2020. DOI: https://doi.org/10.1007/978-3-030-58621-8_45.

    Google Scholar 

  50. P. Bachman, R. D. Hjelm, W. Buchwalter. Learning representations by maximizing mutual information across views. In Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, pp.1392, 2019.

  51. O. J. Hénaff, A. Srinivas, J. D. Fauw, A. Razavi, C. Doersch, S. M. A. Eslami, A. van den Oord. Data-efficient image recognition with contrastive predictive coding. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, pp. 4182–4192, 2020.

  52. P. Elias. Predictive coding-I. IRE Transactions on Information Theory, vol.1, no. 1, pp. 16–24, 1955. DOI: https://doi.org/10.1109/TIT.1955.1055126.

    Google Scholar 

  53. B. S. Atal, M. R. Schroeder. Adaptive predictive coding of speech signals. The Bell System Technical Journal, vol.49, no. 8, pp. 1973–1986, 1970. DOI: https://doi.org/10.1002/J.1538-7305.1970.tb04297.x.

    Google Scholar 

  54. Z. R. Wu, Y. J. Xiong, S. X. Yu, D. H. Lin. Unsupervised feature learning via non-parametric instance discrimination. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3733–3742, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00393.

    Google Scholar 

  55. D. Yoo, S. Park, J. Y. Lee, I. S. Kweon. Multi-scale pyramid pooling for deep convolutional representation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, pp. 71–80, 2015. DOI: https://doi.org/10.1109/CVPRW.2015.7301274.

  56. P. Agrawal, J. Carreira, J. Malik. Learning to see by moving. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 37–45, 2015. DOI: https://doi.org/10.1109/ICCV.2015.13.

  57. J. S. Chung, A. Zisserman. Lip reading in profile. In Proceedings of British Machine Vision Conference, BMVA Press, London, UK, pp.155, 2017. DOI: https://doi.org/10.5244/C.31.155.

    Google Scholar 

  58. X. L. Chen, K. M. He, Exploring simple Siamese representation learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 15745–15753, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.01549.

    Google Scholar 

  59. X. L. Chen, H. Q. Fan, R. Girshick, K. M. He. Improved baselines with momentum contrastive learning. [Online], Available: https://arxiv.org/abs/2003.04297, 2020.

  60. X. L. Chen, S. N. Xie, K. M. He. An empirical study of training self-supervised vision transformers. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 9620–9629, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00950.

    Google Scholar 

  61. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, vol. 1, no. 4, pp. 541–551, 1989. DOI: https://doi.org/10.1162/neco.1989.1.4.541.

    Google Scholar 

  62. M. Ye, X. Zhang, P. C. Yuen, and S. F. Chang. Unsupervised embedding learning via invariant and spreading instance feature. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 6203–6212, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00637.

    Google Scholar 

  63. K. Nozawa, I. Sato. Understanding negative samples in instance discriminative self-supervised representation learning. In Proceedings of the 35th Conference on Neural Information Processing Systems, pp. 5784–5797, 2021.

  64. S. Becke, G. E. Hinton. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, vol.355, no.6356, pp. 161–163, 1992. DOI: https://doi.org/10.1038/355161a0.

    Google Scholar 

  65. T. Chen, S. Kornblith, K. Swersky, M. Norouzi, G. Hinton. Big self-supervised models are strong semi-supervised learners. In Proceedings of the 34th Conference on Neural Information Processing System, Vancouver, Canada, 2020.

  66. N. Silberman, D. Hoiem, P. Kohli, R. Fergus. Indoor segmentation and support inference from RGBD images. In Proceedings of the 12th European Conference on Computer Vision, Springer, Florence, Italy, pp. 746–760, 2012. DOI: https://doi.org/10.1007/978-3-642-33715-4_54.

    Google Scholar 

  67. C. J. Reed, S. Metzger, A. Srinivas, T. Darrell, K. Keutzer. SelfAugment: Automatic augmentation policies for self-supervised learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 2673–2682, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.00270.

    Google Scholar 

  68. T. T. Xiao, X. L. Wang, A. A. Efros, T. Darrell. What should not be contrastive in contrastive learning. In Proceedings of the 9th International Conference on Learning Representations, 2021.

  69. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. A. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, vol.115, no. 3, pp. 211–252, 2015. DOI: https://doi.org/10.1007/s11263-015-0816-y.

    MathSciNet  Google Scholar 

  70. J. W. Yang, D. Parikh, D. Batra. Joint unsupervised learning of deep representations and image clusters. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 5147–5156, 2016. DOI: https://doi.org/10.1109/CVPR.2016.556.

  71. J. Y. Xie, R. Girshick, A. Farhadi. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International Conference on Machine Learning, New York, USA, pp. 478–487, 2016.

  72. M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In Proceedings of the 34th Conference on Neural Information Processing System, Vancouver, Canada, 2020.

  73. H. Mobahi, R. Collobert, J. Weston. Deep learning from temporal coherence in video. In Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Canada, pp. 737–744, 2009. DOI: https://doi.org/10.1145/1553374.1553469.

    Google Scholar 

  74. D. Jayaraman, K. Grauman, K. Slow and steady feature analysis: Higher order temporal coherence in video. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 3852–3861, 2016. DOI: https://doi.org/10.1109/CVPR.2016.418.

  75. P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, G. Brain. Time-contrastive networks: Self-supervised learning from video. In Proceedings of IEEE International Conference on Robotics and Automation, Brisbane, Australia, pp. 1134–1141, 2018. DOI: https://doi.org/10.1109/ICRA.2018.8462891.

  76. X. L. Wang, A. Gupta. Unsupervised learning of visual representations using videos. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 2794–2802, 2015. DOI: https://doi.org/10.1109/ICCV.2015.320.

  77. J. Walker, A. Gupta, M. Hebert. Dense optical flow prediction from a static image. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 2443–2451, 2015. DOI: https://doi.org/10.1109/ICCV.2015.281.

  78. S. Purushwalkam, A. Gupta. Pose from action: Unsupervised learning of pose features based on motion. [Online], Available: https://arxiv.org/abs/1609.05420, 2016.

  79. P. Sermanet, C. Lynch, J. Hsu, S. Levine. Time-contrastive networks: Self-supervised learning from multi-view observation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, pp. 486–487, 2017. DOI: https://doi.org/10.1109/CVPRW.2017.69.

  80. I. Misra, C. L. Zitnick, M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 527–544, 2016. DOI: https://doi.org/10.1007/978-3-319-46448-0_32.

    Google Scholar 

  81. B. Fernando, H. Bilen, E. Gavves, S. Gould. Self-supervised video representation learning with odd-one-out networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 5729–5738, 2017. DOI: https://doi.org/10.1109/CVPR.2017.607.

  82. H. Y. Lee, J. B. Huang, M. Singh, M. H. Yang. Unsupervised representation learning by sorting sequences. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 667–676, 2017. DOI: https://doi.org/10.1109/ICCV.2017.79.

  83. L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, D. Rueckert. Self-supervised learning for medical image analysis using image context restoration. Medical Image Analysis, vol. 58, Article number 101539, 2019. DOI: https://doi.org/10.1016/j.media.2019.101539.

  84. R. Zhang, P. Isola, A. A. Efros. Colorful image colorization. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 649–666, 2016. DOI: https://doi.org/10.1007/978-3-319-46487-9_40.

    Google Scholar 

  85. A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, T. Brox. Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, no.9, pp. 1734–1747, 2016. DOI: https://doi.org/10.1109/TPAMI.2015.2496141.

    Google Scholar 

  86. D. Pathak, R. Girshick, P. Dollár, T. Darrell, B. Hariharan. Learning features by watching objects move. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 6024–6033, 2017. DOI: https://doi.org/10.1109/CVPR.2017.638.

  87. M. Blendowski, H. Nickisch, M. P. Heinrich. How to learn from unlabeled volume data: Self-supervised 3D context feature learning. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Shenzhen, China, pp. 649–657, 2019. DOI: https://doi.org/10.1007/978-3-030-32226-7_72.

    Google Scholar 

  88. A. Jana, H. Qu, C. D. Minacapelli, C. Catalano, V. Rustgi, D. Metaxas. Liver fibrosis and NAS scoring from CT images using self-supervised learning and texture encoding. In Proceedings of the 18th IEEE International Symposium on Biomedical Imaging, Nice, France, pp. 1553–1557, 2021. DOI: https://doi.org/10.1109/ISBI48211.2021.9433920.

  89. Z. K. Li, W. Zhao, F. Shi, L. Qi, X. Z. Xie, Y. Wei, Z. X. Ding, Y. Gao, S. J. Wu, J. Liu, Y. H. Shi, D. G. Shen. A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning. Medical Image Analysis, vol. 69, Article number 101978, 2021. DOI: https://doi.org/10.1016/j.media.2021.101978.

  90. P. A. Fashi. A Self-supervised Contrastive Learning Approach for Whole Slide Image Representation in Digital Pathology, Master dissertation, University of Waterloo, Waterloo, Canada, 2022.

    Google Scholar 

  91. A. Taleb, C. Lippert, T. Klein, M. Nabi. Self-supervised learning for medical images by solving multimodal jigsaw puzzles. [Online], Available: https://arxiv.org/abs/1912.05396, 2020.

  92. A. Taleb, C. Lippert, T. Klein, M. Nabi. Multimodal self-supervised learning for medical image analysis. In Proceedings of the 27th International Conference on Information Processing in Medical Imaging, Springer, Cham, Switzerland, pp. 661–673, 2021. DOI: https://doi.org/10.1007/978-3-030-78191-0_51.

    Google Scholar 

  93. F. Navarro, C. Watanabe, S. Shit, A. Sekuboyina, J. C. Peeken, S. E. Combs, B. H. Menze. Evaluating the robustness of self-supervised learning in medical imaging. [Online], Available: https://arxiv.org/abs/2105.06986, 2021.

  94. S. Manna, S. Bhattacharya, U. Pal. SSLM: Self-supervised learning for medical diagnosis from MR video. [Online], Available: https://arxiv.org/abs/2104.10481, 2021.

  95. Y. X. Li, J. W. Chen, X. P. Xie, K. Ma, Y. F. Zheng. Self-loop uncertainty: A novel pseudo-label for semi-supervised medical image segmentation. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Lima, Peru, pp. 614–623, 2020. DOI: https://doi.org/10.1007/978-3-030-59710-8_60.

    Google Scholar 

  96. M. Luna, M. Kwon, S. H. Park. Precise separation of adjacent nuclei using a Siamese neural network. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Shenzhen, China, pp. 577–585, 2019. DOI: https://doi.org/10.1007/978-3-030-32239-7_64.

    Google Scholar 

  97. H. Oda, H. R. Roth, K. Chiba, J. Sokolić, T. Kitasaka, M. Oda, A. Hinoki, H. Uchida, J. A. Schnabel, K. Mori. BE-SNet: Boundary-enhanced segmentation of cells in histopathological images. In Proceedings of the 21st International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Granada, Spain, pp. 228–236, 2018. DOI: https://doi.org/10.1007/978-3-030-00934-2_26.

    Google Scholar 

  98. Y. N. Zhou, O. F. Onder, Q. Dou, E. Tsougenis, H. Chen, P. A. Heng. CIA-Net: Robust nuclei instance segmentation with contour-aware information aggregation. In Proceedings of the 26th International Conference on Information Processing in Medical Imaging, Springer, Hong Kong, China, pp. 682–693, 2019. DOI: https://doi.org/10.1007/978-3-030-20351-1_53.

    Google Scholar 

  99. Y. X. Li, L. L. Shen. Skin lesion analysis towards melanoma detection using deep learning network. Sensors, vol. 18, no. 2, Article number 556, 2018. DOI: https://doi.org/10.3390/S18020556.

    Google Scholar 

  100. E. Nasr-Esfahani, S. Rafiei, M. H. Jafari, N. Karimi, J. S. Wrobel, S. Samavi, S. M. R. Soroushmehr. Dense pooling layers in fully convolutional network for skin lesion segmentation. Computerized Medical Imaging and Graphics, vol.78, Article number 101658, 2019. DOI: https://doi.org/10.1016/j.compmedimag.2019.101658.

  101. Y. J. Tang, F. Yang, S. F. Yuan, C. A. Zhan. A multistage framework with context information fusion structure for skin lesion segmentation. In Proceedings of the 16th IEEE International Symposium on Biomedical Imaging, Venice, Italy, pp. 1407–1410, 2019. DOI: https://doi.org/10.1109/ISBI.2019.8759535.

  102. J. Chae, R. Zimmermann, D. Kim, J. Kim. Attentive transfer learning via self-supervised learning for cervical dysplasia diagnosis. Journal of Information Processing Systems, vol.17, no.3, pp.453–461, 2021. DOI: https://doi.org/10.3745/JIPS.04.0214.

    Google Scholar 

  103. A. M. L. Santilli, A. Jamzad, A. Sedghi, M. Kaufmann, K. Logan, J. Wallis, K. Y. M. Ren, N. Janssen, S. Merchant, J. Engel, D. McKay, S. Varma, A. M. Wang, G. Fichtinger, J. F. Rudan, P. Mousavi. Domain adaptation and self-supervised learning for surgical margin detection. International Journal of Computer Assisted Radiology and Surgery, vol. 16, no. 5, pp. 861–869, 2021. DOI: https://doi.org/10.1007/s11548-021-02381-6.

    Google Scholar 

  104. X. R. Zhuang, Y. X. Li, Y. F. Hu, K. Ma, Y. J. Yang, Y. F. Zheng. Self-supervised feature learning for 3D medical images by playing a Rubik’s cube. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Shenzhen, China, pp. 420–428, 2019. DOI: https://doi.org/10.1007/978-3-030-32251-9_46.

    Google Scholar 

  105. J. W. Zhu, Y. X. Li, Y. F. Hu, K. Ma, S. K. Zhou, Y. Zheng. Rubik’s Cube+: A self-supervised feature learning framework for 3D medical image analysis. Medical Image Analysis, vol.64, Article number 101746, 2020. DOI: https://doi.org/10.1016/j.media.2020.101746.

  106. X. Tao, Y. X. Li, W. H. Zhou, K. Ma, Y. F. Zheng. Revisiting Rubik’s cube: Self-supervised learning with volume-wise transformation for 3D medical image segmentation. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Lima, Peru, pp. 238–248, 2020. DOI: https://doi.org/10.1007/978-3-030-59719-1_24.

  107. Y. X. Li, D. Wei, J. W. Chen, S. L. Cao, H. Y. Zhou, Y. C. Zhu, J. R. Wu, L. Lan, W. B. Sun, T. Y. Qian, K. Ma, H. B. Xu, Y. F. Zheng. Efficient and effective training of COVID-19 classification networks with self-supervised dual-track learning to rank. IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2787–2797, 2020. DOI: https://doi.org/10.1109/JBHI.2020.3018181.

    Google Scholar 

  108. X. M. Li, X. W. Hu, X. J. Qi, L. Q. Yu, W. Zhao, P. A. Heng, L. Xing. Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis. IEEE Transactions on Medical Imaging, vol. 40, no. 9, pp. 2284–2294, 2021. DOI: https://doi.org/10.1109/TMI.2021.3075244.

    Google Scholar 

  109. J. L. Yang, X. X. Li, D. Pak, N. C. Dvornek, J. Chapiro, M. D. Lin, J. S. Duncan. Cross-modality segmentation by self-supervised semantic alignment in disentangled content space. In Proceedings of the 2nd MICCAI Workshop on Domain Adaptation and Representation Transfer, DCL: MICCAI Workshop on Distributed and Collaborative Learning, Springer, Lima, Peru, pp. 52–61, 2020. DOI: https://doi.org/10.1007/978-3-030-60548-3_6.

    Google Scholar 

  110. P. Y. Simard, D. Steinkraus, J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 7th International Conference on Document Analysis and Recognition, IEEE, Edinburgh, UK, pp. 958–963, 2003. DOI: https://doi.org/10.1109/ICDAR.2003.1227801.

    Google Scholar 

  111. L. L. Jing, Y. L. Tian. Self-supervised spatiotemporal feature learning by video geometric transformations. [Online], Available: https://arxiv.org/abs/1811.11387, 2018.

  112. T. Y. Lin, P. Dollár, R. Girshick, K. M. He, B. Hariharan, S. Belongie. Feature pyramid networks for object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 936–944, 2017. DOI: https://doi.org/10.1109/CVPR.2017.106.

  113. J. Y. Liu, L. L. Cao, O. Akin, Y. L. Tian. Accurate and robust pulmonary nodule detection by 3D feature pyramid network with self-supervised feature learning. [Online], Available: https://arxiv.org/abs/1907.11704, 2019.

  114. H. H. Dong, Y. Iwamoto, X. H. Han, L. F. Lin, H. J. Hu, X. J. Cai, Y. W. Chen. Case discrimination: Self-supervised feature learning for the classification of focal liver lesions. In Innovation in Medicine and Healthcare, Y. W. Chen, S. Tanaka, R. J. Howlett, L. C. Jain, Eds., Singapore: Springer, pp. 241–249, 2021. DOI: https://doi.org/10.1007/978-981-16-3013-2_20.

    Google Scholar 

  115. A. A. Z. Imran, C. Huang, H. Tang, W. Fan, Y. Xiao, D. Hao, Z. Qian, D. Terzopoulos. Self-supervised, semi-supervised, multi-context learning for the combined classification and segmentation of medical images (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, vol.34, no. 10, pp. 13815–13816, 2020. DOI: https://doi.org/10.1609/aaai.v34i10.7179.

    Google Scholar 

  116. N. Tajbakhsh, Y. F. Hu, J. L. Cao, X. J. Yan, Y. Xiao, Y. Lu, J. M. Liang, D. Terzopoulos, X. W. Ding. Surrogate supervision for medical image analysis: Effective deep learning from limited quantities of labeled data. In Proceedings of the 16th IEEE International Symposium on Biomedical Imaging, Venice, Italy, pp. 1251–1255, 2019. DOI: https://doi.org/10.1109/ISBI.2019.8759553.

  117. M. Arjovsky, S. Chintala, L. Bottou. Wasserstein GAN. [Online], Available: https://arxiv.org/abs/1701.07875, 2017.

  118. G. Larsson, M. Maire, G. Shakhnarovich. Colorization as a proxy task for visual understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 840–849, 2017. DOI: https://doi.org/10.1109/CVPR.2017.96.

  119. N. A. Koohbanani, B. Unnikrishnan, S. A. Khurram, P. Krishnaswamy, N. Rajpoot. Self-path: Self-supervision for classification of pathology images with limited annotations. IEEE Transactions on Medical Imaging, vol.40, no. 10, pp. 2845–2856, 2021. DOI: https://doi.org/10.1109/TMI.2021.3056023.

    Google Scholar 

  120. A. Vats, M. Pedersen, A. Mohammed. A preliminary analysis of self-supervision for wireless capsule endoscopy. In Proceedings of the 9th European Workshop on Visual Information Processing, IEEE, Paris, France, 2021. DOI: https://doi.org/10.1109/EUVIP50544.2021.9484012.

    Google Scholar 

  121. J. Y. Liu, G. M. Zhao, Y. Fei, M. Zhang, Y. Z. Wang, Y. Z. Yu. Align, attend and locate: Chest X-ray diagnosis via contrast induced attention network with limited supervision. In Proceeding of IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, pp. 10631–10640, 2019. DOI: https://doi.org/10.1109/ICCV.2019.01073.

  122. X. P. Xie, J. W. Chen, Y. X. Li, L. L. Shen, K. Ma, Y. F. Zheng. Instance-aware self-supervised learning for nuclei segmentation. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Lima, Peru, pp. 341–350, 2020. DOI: https://doi.org/10.1007/978-3-030-59722-1_33.

    Google Scholar 

  123. L. Sun, K. Yu, K. Batmanghelich. Context matters: Graph-based self-supervised representation learning for medical images. Proceedings of the AAAI Conference on Artificial Intelligence, vol.35, no. 6, pp. 4874–4882, 2021. DOI: https://doi.org/10.1609/aaai.v35i6.16620.

    Google Scholar 

  124. Y. H. Zhang, H. Jiang, Y. Miura, C. D. Manning, C. P. Langlotz. Contrastive learning of medical visual representations from paired images and text. [Online], Available: https://arxiv.org/abs/2010.00747, 2020.

  125. N. S. Punn, S. Agarwal. BT-Unet: A self-supervised learning framework for biomedical image segmentation using Barlow Twins with U-Net models. Machine Learning, vol.111, no. 12, pp. 4585–4600, 2022. DOI: https://doi.org/10.1007/S10994-022-06219-3.

    MathSciNet  MATH  Google Scholar 

  126. A. Kaku, S. Upadhya, N. Razavian. Intermediate layers matter in momentum contrastive self supervised learning. In Proceedings of the 35th Conference on Neural Information Processing Systems, pp. 24063–24074, 2021.

  127. M. R. H. Taher, F. Haghighi, M. B. Gotway, J. M. Liang. CAiD: Context-aware instance discrimination for self-supervised learning in medical imaging. [Online], Available: https://arxiv.org/abs/2204.07344, 2022.

  128. H. Y. Zhou, C. X. Lu, S. B. Yang, X. G. Han, Y. Z. Yu. Preservational learning improves self-supervised medical image models by reconstructing diverse contexts. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 3479–3489, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00348.

    Google Scholar 

  129. Y. P. Chen, Y. H. Lo, F. P. Lai, C. H. Huang. Disease concept-embedding based on the self-supervised method for medical information extraction from electronic health records and disease retrieval: Algorithm development and validation study. Journal of Medical Internet Research, vol. 23, no. 1, Article number e25113, 2021. DOI: https://doi.org/10.2196/25113.

    Google Scholar 

  130. K, Stacke, C. Lundström, J. Unger, G. Eilertsen. Evaluation of contrastive predictive coding for histopathology applications. In Proceedings of Machine Learning for Health NeurlPS Workshop, pp. 328–340, 2020.

  131. A. Taleb, W. Loetzsch, N. Danz, J. Severin, T. Gaertner, B. Bergner, C. Lippert. 3D self-supervised methods for medical imaging. In Proceedings of the 34th Conference on Neural Information Processing System, Vancouver, Canada, pp. 1524, 2020.

  132. J. W. Zhu, Y. X. Li, S. K. Zhou. Aggregative self-supervised feature learning from a limited sample. [Online], Available: https://arxiv.org/abs/2012.07477, 2021.

  133. Z. W. Zhou, V. Sodha, M. M. R. Siddiquee, R. B. Feng, N. Tajbakhsh, M. B. Gotway, J. M. Liang. Models genesis: Generic autodidactic models for 3D medical image analysis. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Shenzhen, China, pp. 384–393, 2019. DOI: https://doi.org/10.1007/978-3-030-32251-9_42.

    Google Scholar 

  134. J. W. Zhu, Y. X. Li, Y. F. Hu, S. K. Zhou. Embedding task knowledge into 3D neural networks via self-supervised learning. [Online], Available: https://arxiv.org/abs/2006.05798, 2020.

  135. G. Z. Jian, G. S. Lin, C. M. Wang, S. L. Yan. Helicobacter pylori infection classification based on convolutional neural network and self-supervised learning. In Proceedings of the 5th International Conference on Graphics and Signal Processing, ACM, Nagoya, Japan, pp. 60–64, 2021. DOI: https://doi.org/10.1145/3474906.3474912.

    Google Scholar 

  136. O. G. Holmberg, N. D. Köhler, T. Martins, J. Siedlecki, T. Herold, L. Keidel, B. Asani, J. Schiefelbein, S. Priglinger, K. U. Kortuem, F. J. Theis. Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy. Nature Machine Intelligence, vol.2, no. 11, pp. 719–726, 2020. DOI: https://doi.org/10.1038/s42256-020-00247-1.

    Google Scholar 

  137. J. B. Jiao, Y. F. Cai, M. Alsharid, L. Drukker, A. T. Papageorghiou, J. A. Noble. Self-supervised contrastive video-speech representation learning for ultrasound. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Lima, Peru, pp. 534–543, 2020. DOI: https://doi.org/10.1007/978-3-030-59716-0_51.

    Google Scholar 

  138. A. Tamkin, V. Liu, R. F. Lu, D. Fein, C. Schultz, N. Goodman. DABS: A domain-agnostic benchmark for self-supervised learning. In Proceedings of the 35th Conference on Neural Information Processing Systems, 2021.

  139. Y. T. Xie, J. P. Zhang, Z. H. Liao, Y. Xia, C. H. Shen. PGL: Prior-guided local self-supervised learning for 3D medical image segmentation. [Online], Available: https://arxiv.org/abs/2011.12640, 2020.

  140. K. Chaitanya, E. Erdil, N. Karani, E. Konukoglu. Contrastive learning of global and local features for medical image segmentation with limited annotations. In Proceedings of the 34th Conference on Neural Information Processing System, NeurIPS, Vancouver, Canada, pp.1052, 2020.

    Google Scholar 

  141. K. Chaitanya. Accurate medical image segmentation with limited annotations. Ph.D. dissertation, ETH Zurich, Switzerland, 2022. DOI: https://doi.org/10.3929/ethz-b-000533117.

    Google Scholar 

  142. C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Q. Qiu, D. Rueckert. Self-supervised learning for few-shot medical image segmentation. IEEE Transactions on Medical Imaging, vol.41, no. 7, pp. 1837–1848, 2022. DOI: https://doi.org/10.1109/TMI.2022.3150682.

    Google Scholar 

  143. C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Q. Qiu, D. Rueckert. Self-supervision with superpixels: Training few-shot medical image segmentation without annotation. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 762–780, 2020. DOI: https://doi.org/10.1007/978-3-030-58526-6_45.

    Google Scholar 

  144. K. Chaitanya, E. Erdil, N. Karani, E. Konukoglu. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. [Online], Available: https://arxiv.org/abs/2112.09645, 2021.

  145. K. Yan, J. Z. Cai, D. K. Jin, S. Miao, D. Z. Guo, A. P. Harrison, Y. B. Tang, J. Xiao, J. J. Lu, L. Lu. SAM: Self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Transactions on Medical Imaging, vol.41, no. 10, pp. 2658–2669, 2022. DOI: https://doi.org/10.1109/TMI.2022.3169003.

    Google Scholar 

  146. M. Sahasrabudhe, S. Christodoulidis, R. Salgado, S. Michiels, S. Loi, F. André, N. Paragios, M. Vakalopoulou. Self-supervised nuclei segmentation in histopathological images using attention. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Lima, Peru, pp. 393–402, 2020. DOI: https://doi.org/10.1007/978-3-030-59722-1_38.

    Google Scholar 

  147. Y. Sun, K. Gao, W. L. Lin, G. Li, S. J. Niu, L. Wang. Multi-scale self-supervised learning for multi-site pediatric brain MR image segmentation with motion/Gibbs artifacts. In Proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, Springer, Strasbourg, France, pp. 171–179. 2021. DOI: https://doi.org/10.1007/978-3-030-87589-3_18.

    Google Scholar 

  148. K. Y. Chen, Q. B. Wang, Y. T. Ma. Cervical optical coherence tomography image classification based on contrastive self-supervised texture learning. Medical Physics, vol.49, no. 6, pp. 3638–3653, 2022. DOI: https://doi.org/10.1002/mp.15630.

    Google Scholar 

  149. X. M. Tang, C. Zhou, L. T. Chen, Y. Wen. Enhancing medical image classification via augmentation-based pretraining. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Houston, USA, pp. 1538–1541, 2021. DOI: https://doi.org/10.1109/BIBM52615.2021.9669817.

  150. H. Spitzer, K. Kiwitz, K. Amunts, S. Harmeling, T. Dickscheid. Improving cytoarchitectonic segmentation of human brain areas with self-supervised Siamese networks. In Proceedings of the 21st International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Granada, Spain, pp. 663–671, 2018. DOI: https://doi.org/10.1007/978-3-030-00931-l_76.

    Google Scholar 

  151. H. W. Li, F. F. Xue, K. Chaitanya, S. D. Liu, I. Ezhov, B. Wiestler, J. G. Zhang. Imbalance-aware self-supervised learning for 3D radiomic representations. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 36–46, 2021. DOI: https://doi.org/10.1007/978-3-030-87196-3_4.

    Google Scholar 

  152. M. L. Ye, E. Johns, A. Handa, L. Zhang, P. Pratt, G. Z. Yang. Self-supervised Siamese learning on stereo image pairs for depth estimation in robotic surgery. In Proceedings of the 10th Hamlyn Symposium on Medical Robotics, Imperial College London, London, UK, pp. 27–28, 2017. DOI: https://doi.org/10.31256/hsmr2017.14.

    Google Scholar 

  153. A. Dhere, J. Sivaswamy. Self-supervised learning for segmentation. [Online], Available: https://arxiv.org/abs/2101.05456, 2021.

  154. A. Jamaludin, T. Kadir, A. Zisserman. Self-supervised learning for spinal MRIs. In Proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, ML-CDS: International Workshop on Multimodal Learning for Clinical Decision Support, Springer, Québec City, Canada, pp. 294–302, 2017. DOI: https://doi.org/10.1007/978-3-319-67558-9_34.

    Google Scholar 

  155. A. Rivail, U. Schmidt-Erfurth, W. D. Vogl, S. M. Waldstein, S. Riedl, C. Grechenig, Z. C. Wu, H. Bogunovic. Modeling disease progression in retinal OCTs with longitudinal self-supervised learning. In Proceedings of the Second International Workshop on PRedictive Intelligence In Medicine, Springer, Shenzhen, China, pp. 44–52, 2019. DOI: https://doi.org/10.1007/978-3-030-32281-6_5.

    Google Scholar 

  156. G. Li, R. Togo, T. Ogawa, M. Haseyama. Self-supervised learning for gastritis detection with gastric X-ray images. [Online], Available: https://arxiv.org/abs/2104.02864, 2021.

  157. A. Tarvainen, H. Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In Proceeding of the 5th International Conference on Learning Representations, Toulon, France, 2017.

  158. F. B. Liu, Y. Tian, F. R. Cordeiro, V. Belagiannis, I. Reid, G. Carneiro. Self-supervised Mean Teacher for semi-supervised chest X-ray classification. In Proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, Springer, Strasbourg, France, pp. 426–436, 2021. DOI: https://doi.org/10.1007/978-3-030-87589-3_44.

    Google Scholar 

  159. S. Park, G. Kim, Y. Oh, J. B. Seo, S. M. Lee, J. H. Kim, S. Moon, J. K. Lim, C. M. Park, J. C. Ye. Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation. Nature Communications, vol. 13, no. 13, Article number 3848, 2022. DOI: https://doi.org/10.1038/s41467-022-31514-x.

    Google Scholar 

  160. C. Y. You, Y. Zhou, R. H. Zhao, L. Staib, J. S. Duncan. SimCVD: Simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Transactions on Medical Imaging, vol.41, no. 9, pp. 2228–2237, 2022. DOI: https://doi.org/10.1109/TMI.2022.3161829.

    Google Scholar 

  161. C. Y. You, W. C. Dai, L. Staib, J. S. Duncan. Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation. [Online], Available: https://arxiv.org/abs/2206.02307, 2022.

  162. C. Y. You, W. C. Dai, F. L. Liu, H. R. Su, X. R. Zhang, X. X. Li, D. A. Clifton, L. Staib, J. S. Duncan. Mine yOur owN anatomy: Revisiting medical image segmentation with extremely limited labels. [Online], Available: https://arxiv.org/abs/2209.13476, 2022.

  163. A. Kwasigroch, M. Grochowski, A. Mikolajczyk. Self-supervised learning to increase the performance of skin lesion classification. Electronics, vol. 9, no. 11, Article number 1930, 2020. DOI: https://doi.org/10.3390/electronics9111930.

    Google Scholar 

  164. H. Sowrirajan, J. B. Yang, A. Y. Ng, P. Rajpurkar. MoCo pretraining improves representation and transferability of chest X-ray models. In Proceedings of the 4th Conference on Medical Imaging with Deep Learning, Lübeck, Germany, pp. 728–744, 2021.

  165. A. Sriram, M. Muckley, K. Sinha, F. Shamout, J. Pineau, K. J. Geras, L. Azour, Y. Aphinyanaphongs, N. Yakubova, W. Moore. COVID-19 prognosis via self-supervised representation learning and multi-image prediction. [Online], Available: https://arxiv.org/abs/2101.04909, 2021.

  166. X. H. He, X. Y. Yang, S. H. Zhang, J. Y. Zhao, Y. C. Zhang, E. Xing, P. T. Xie. Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. [Online], Available: https://www.medrxiv.org/content/10.1101/2020.04.13.20063941vl 2020.

  167. Y. J. Zhu. Self-supervised learning for small shot COVID-19 classification. In Proceedings of the 3rd International Conference on Information Technology and Computer Communications, ACM, Guangzhou, China, pp. 36–40, 2021. DOI: https://doi.org/10.1145/3473465.3473472.

    Google Scholar 

  168. C. J. Reed, X. Y. Yue, A. Nrusimha, S. Ebrahimi, V. Vijaykumar, R. Mao, B. Li, S. H. Zhang, D. Guillory, S. Metzger, K. Keutzer, T. Darrell. Self-supervised pretraining improves self-supervised pretraining. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, IEEE, Waikoloa, USA, pp. 1050–1060, 2022. DOI: https://doi.org/10.1109/WACV51458.2022.00112.

    Google Scholar 

  169. J. Irvin, P. Rajpurkar, M. Ko, Y. F. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi, J. K. Sandberg, R. Jones, D. B. Larson, C. P. Langlotz, B. N. Patel, M. P. Lungren, A. Y. Ng. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence, vol.33, no. 1, pp. 590–597, 2019. DOI: https://doi.org/10.1609/aaai.v33i01.3301590.

    Google Scholar 

  170. D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, L. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, K. Zhang. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, vol.172, no. 5, pp. 1122–1131, 2018. DOI: https://doi.org/10.1016/j.cell.2018.02.010.

    Google Scholar 

  171. X. L. Liang, Y. Liu, J. H. Luo, Y. J. He, T. J. Chen, Q. Yang. Self-supervised cross-silo federated neural architecture search. [Online], Available: https://arxiv.org/abs/2101.11896, 2021.

  172. Z. R. Wu, S. R. Song, A. Khosla, F. Yu, L. G. Zhang, X. O. Tang, J. X. Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 1912–1920, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7298801.

  173. J. C. Hu, Z. L. Feng, Y. N. Mao, J. Lei, D. Yu, M. L. Song. A location constrained dual-branch network for reliable diagnosis of jaw tumors and cysts. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 723–732, 2021. DOI: https://doi.org/10.1007/978-3-030-87234-2_68.

    Google Scholar 

  174. Y. W. Wu, D. W. Zeng, Z. P. Wang, Y. Y. Shi, J. T. Hu. Federated contrastive learning for volumetric medical image segmentation. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 367–377, 2021. DOI: https://doi.org/10.1007/978-3-030-87199-4_35.

    Google Scholar 

  175. Y. W. Wu, D. W. Zeng, Z. P. Wang, Y. Y. Shi, J. T. Hu. Distributed contrastive learning for medical image segmentation. Medical Image Analysis, vol. 81, Article number 102564, 2022. DOI: https://doi.org/10.1016/j.media.2022.102564.

  176. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith. Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Systems, Austin, USA, pp. 429–450, 2020.

  177. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. Y. Arcas. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, pp. 1273–1282, 2017.

  178. Y. Zhao, M. Li, L. Z. Lai, N. Suda, D. Civin, V. Chandra. Federated learning with non-IID data. [Online], Available: https://arxiv.org/abs/1806.00582, 2018.

  179. N. Dong, I. Voiculescu. Federated contrastive learning for decentralized unlabeled medical images. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, 2021.

    Google Scholar 

  180. S. Y. He, P. C. Xi, A. Ebadi, S. Tremblay, A. Wong. Performance or trust? Why not both. Deep AUC Maximization with self-supervised learning for COVID-19 chest X-ray classifications. [Online], Available: https://arxiv.org/abs/2112.08363, 2021.

  181. D. W. Zeng, Y. W. Wu, X. R. Hu, X. W. Xu, H. Y. Yuan, M. P. Huang, J. Zhuang, J. T. Hu, Y. Y. Shi. Positional contrastive learning for volumetric medical image segmentation. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 221–230, 2021. DOI: https://doi.org/10.1007/978-3-030-87196-3_21.

    Google Scholar 

  182. C. Saillard, O. Dehaene, T. Marchand, O. Moindrot, A. Kamoun, B. Schmauch, S. Jegou. Self-supervised learning improves dMMR/MSI detection from histology slides across multiple cancers. In Proceedings of MICCAI Workshop on Computational Pathology, Strasbourg, France, pp. 191–205, 2021.

  183. D. Tomar, B. Bozorgtabar, M. Lortkipanidze, G. Vray, M. S. Rad, J. P. Thiran. Self-supervised generative style transfer for one-shot medical image segmentation. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, IEEE, Waikoloa, USA, pp. 1737–1747, 2022. DOI: https://doi.org/10.1109/WACV51458.2022.00180.

    Google Scholar 

  184. S. Azizi, B. Mustafa, F. Ryan, Z. Beaver, J. Freyberg, J. Deaton, A. Loh, A. Karthikesalingam, S. Kornblith, T. Chen, V. Natarajan, M. Norouzi. Big self-supervised models advance medical image classification. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 3458–3468, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00346.

    Google Scholar 

  185. M. Gazda, J. Plavka, J. Gazda, P. Drotár. Self-supervised deep convolutional neural network for chest X-ray classification. IEEE Access, vol.9, pp. 151972–151982, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3125324.

    Google Scholar 

  186. O. Ciga, T. Xu, A. L. Martel. Self supervised contrastive learning for digital histopathology. Machine Learning with Applications, vol.7, Article number 100198, 2022. DOI: https://doi.org/10.1016/j.mlwa.2021.100198.

  187. B. Li, Y. Li, K. W. Eliceiri. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 14313–14323, 2021. DOI: https://doi.org/10.1109/cvpr46437.2021.01409.

    Google Scholar 

  188. O. Ciga. Addressing the Data Annotation Bottleneck in Breast Digital Pathology, Ph.D. dissertation, University of Toronto, Toronto, Canada, 2021.

    Google Scholar 

  189. N. Mojab, V. Noroozi, D. Yi, M. P. Nallabothula, A. Aleem, P. S. Yu, J. A. Hallak. Real-world multi-domain data applications for generalizations to clinical settings. In Proceedings of the 19th IEEE International Conference on Machine Learning and Applications, Miami, USA, pp. 677–684, 2020. DOI: https://doi.org/10.1109/ICMLA51294.2020.00112.

  190. Y. Schirris, E. Gavves, I. Nederlof, H. M. Horlings, J. Teuwen. DeepSMILE: Self-supervised heterogeneity-aware multiple instance learning for DNA damage response defect classification directly from H&E whole-slide images. [Online], Available: https://arxiv.org/abs/ 2107.09405, 2021.

  191. M. Ilse, J. M. Tomczak, M. Welling. Attention-based deep multiple instance learning. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, pp. 2127–2136, 2018.

  192. X. Zhao, S. S. Zhou. Fast mixing of hard negative samples for contrastive learning and use for COVID-19. In Proceedings of the 4th International Conference on Big Data Technologies, ACM, Zibo, China, pp. 6–12, 2021. DOI: https://doi.org/10.1145/3490322.3490324.

    Google Scholar 

  193. Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, D. Larlus. Hard negative mixing for contrastive learning. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1829, 2020.

  194. R. S. H. Wicaksono, A. A. Septiandri, A. Jamal. Human embryo classification using self-supervised learning. In Proceedings of the 2nd International Conference on Artificial Intelligence and Data Sciences, IEEE, Ipoh, Malaysia, 2021. DOI: https://doi.org/10.1109/AiDAS53897.2021.9574328.

    Google Scholar 

  195. S. Manna, S. Bhattacharya, U. Pal. Interpretive self-supervised pre-training: Boosting performance on visual medical data. In Proceedings of the 12th Indian Conference on Computer Vision, Graphics and Image Processing, ACM, Jodhpur, India, Article number 15, 2021. DOI: https://doi.org/10.1145/3490035.3490273.

    Google Scholar 

  196. C. Y. You, R. H. Zhao, L. H. Staib, J. S. Duncan. Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Singapore, pp. 639–652. 2022. DOI: https://doi.org/10.1007/978-3-031-16440-8_61.

    Google Scholar 

  197. Q. S. Yao, Q. Quan, L. Xiao, S. K. Zhou. One-shot medical landmark detection. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 177–188, 2021. DOI: https://doi.org/10.1007/978-3-030-87196-3_17.

    Google Scholar 

  198. H. Y. Zhou, S. Yu, C. Bian, Y. F. Hu, K. Ma, Y. F. Zheng. Comparing to learn: Surpassing ImageNet pretraining on radiographs by comparing image representations. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Lima, Peru, pp. 398–407, 2020. DOI: https://doi.org/10.1007/978-3-030-59710-8_39.

    Google Scholar 

  199. Y. Ali, A. Taleb, M. M. C. Höhne, C. Lippert. Self-supervised learning for 3D medical image analysis using 3D SimCLR and Monte Carlo Dropout.[Online], Available: https://arxiv.org/abs/2109.14288, 2021.

  200. F. Inglese, M. Kim, G. M. Steup-Beekman, T. W. J. Huizinga, M. A. van Buchem, J. de Bresser, D. S. KIM, I. Ronen. MRI-based classification of neuropsychiatric systemic lupus erythematosus patients with self-supervised contrastive learning. Frontiers in Neuroscience, vol. 16, Article number 695888, 2022. DOI: https://doi.org/10.3389/fnins.2022.695888.

  201. H. Zheng, J. Han, H. X. Wang, L. Yang, Z. Zhao, C. L. Wang, D. Z. Chen. Hierarchical self-supervised learning for medical image segmentation based on multi-domain data aggregation. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 622–632, 2021. DOI: https://doi.org/10.1007/978-3-030-87193-2_59.

    Google Scholar 

  202. A. Abbas, M. M. Abdelsamea, M. M. Gaber. 4S-DT: Self-supervised super sample decomposition for transfer learning with application to COVID-19 detection. IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2798–2808, 2021. DOI: https://doi.org/10.1109/TNNLS.2021.3082015.

    Google Scholar 

  203. L. Rokach, O. Maimon, O. Arad. Improving supervised learning by sample decomposition. International Journal of Computational Intelligence and Applications, vol.5, no. 1, pp. 37–53, 2005. DOI: https://doi.org/10.1142/S146902680500143X.

    Google Scholar 

  204. C. Abbet, I. Zlobec, B. Bozorgtabar, J. P. Thiran. Divide-and-rule: Self-supervised learning for survival analysis in colorectal cancer. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Lima, Peru, pp. 480–489, 2020. DOI: https://doi.org/10.1007/978-3-030-59722-1_46.

    Google Scholar 

  205. D. Mahapatra, B. Bozorgtabar, Z. Y. Ge. Medical image classification using generalized zero shot learning. In Proceedings of IEEE/CVF International Conference on Computer Vision Workshops, IEEE, Montreal, Canada, pp. 3337–3346, 2021. DOI: https://doi.org/10.1109/ICCVW54120.2021.00373.

    Google Scholar 

  206. M. Caron, P. Bojanowski, A. Joulin, M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 139–156, 2018. DOI: https://doi.org/10.1007/978-3-030-01264-9_9.

    Google Scholar 

  207. L. Chaves, A. Bissoto, E. Valle, S. Avila. An evaluation of self-supervised pre-training for skin-lesion analysis. [Online], Available: https://arxiv.org/abs/2106.09229, 2022.

  208. Y. Q. Chen, C. Y. Zhang, Y. Song, N. Makris, Y. Rathi, W. D. Cai, F. Zhang, L. J. O’Donnell. Deep fiber clustering: Anatomically informed unsupervised deep learning for fast and effective white matter parcellation. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 497–507, 2021. DOI: https://doi.org/10.1007/978-3-030-87234-2_47.

    Google Scholar 

  209. O. Ciga, T. Xu, A. L. Martel. Resource and data efficient self supervised learning. [Online], Available: https://arxiv.org/abs/2109.01721, 2021.

  210. N. U. Islam, S. Gehlot, Z. W. Zhou, M. B. Gotway, J. M. Liang. Seeking an optimal approach for computer-aided pulmonary embolism detection. In Proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, Springer, Strasbourg, France, pp. 692–702, 2021. DOI: https://doi.org/10.1007/978-3-030-87589-3_71.

    Google Scholar 

  211. J. Gildenblat, E. Klaiman. Self-supervised similarity learning for digital pathology. [Online], Available: https://arxiv.org/abs/1905.08139, 2020.

  212. W. J. Bai, C. Chen, G. Tarroni, J. M. Duan, F. Guitton, S. E. Petersen, Y. K. Guo, P. M. Matthews, D. Rueckert. Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Shenzhen, China, pp. 541–549, 2019. DOI: https://doi.org/10.1007/978-3-030-32245-8_60.

    Google Scholar 

  213. M. F. Kragh, J. Rimestad, J. T. Lassen, J. Berntsen, H. Karstoft. Predicting embryo viability based on self-supervised alignment of time-lapse videos. IEEE Transactions on Medical Imaging, vol.41, no. 2, pp. 465–475, 2022. DOI: https://doi.org/10.1109/TMI.2021.3116986.

    Google Scholar 

  214. D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, A. Zisserman. Temporal cycle-consistency learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 1801–1810, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00190.

    Google Scholar 

  215. Q. Lu, Y. X. Li, C. Y. Ye. Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks. Medical Image Analysis, vol. 72, Article number 102094, 2021. DOI: https://doi.org/10.1016/j.media.2021.102094.

  216. Q. Lu, Y. X. Li, C. Y. Ye. White matter tract segmentation with self-supervised learning. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Lima, Peru, pp. 270–279, 2020. DOI: https://doi.org/10.1007/978-3-030-59728-3_27.

    Google Scholar 

  217. P. Y. Zhang, F. S. Wang, Y. F. Zheng. Self supervised deep representation learning for fine-grained body part recognition. In Proceedings of the 14th IEEE International Symposium on Biomedical Imaging, IEEE, Melbourne, Australia, pp. 578–582, 2017. DOI: https://doi.org/10.1109/ISBI.2017.7950587.

    Google Scholar 

  218. X. B. Nguyen, G. S. Lee, S. H. Kim, H. J. Yang. Self-supervised learning based on spatial awareness for medical image analysis. IEEE Access, vol.8, pp. 162973–162981, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3021469.

    Google Scholar 

  219. J. B. Jiao, R. Droste, L. Drukker, A. T. Papageorghiou, J. A. Noble. Self-supervised representation learning for ultrasound video. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, Iowa City, USA, pp. 1847–1850, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098666.

  220. T. Klinghoffer, P. Morales, Y. G. Park, N. Evans, K. Chung, L. J. Brattain. Self-supervised feature extraction for 3D axon segmentation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Seattle, USA, pp. 4213–4219, 2020. DOI: https://doi.org/10.1109/CVPRW50498.2020.00497.

    Google Scholar 

  221. C. L. Srinidhi, S. W. Kim, F. D. Chen, A. L. Martel. Self-supervised driven consistency training for annotation efficient histopathology image analysis. Medical Image Analysis, vol. 75, Article number 102256, 2022. DOI: https://doi.org/10.1016/j.media.2021.102256.

  222. M. Rahat Khan, A. S. M. Shafi. Statistical texture features based automatic detection and classification of diabetic retinopathy. International Journal of Image, Graphics and Signal Processing, vol. 13, no. 2, pp. 53–61, 2021. DOI: https://doi.org/10.5815/ijigsp.2021.02.05.

    Google Scholar 

  223. R. Kama, K. Chinegaram, R. B. Tummala, R. R. Ganta. Segmentation of soft tissues and tumors from biomedical images using Optimized K-means Clustering via level set formulation. International Journal of Intelligent Systems and Applications, vol. 11, no. 9, pp. 18–28, 2019. DOI: https://doi.org/10.5815/ijisa.2019.09.03.

    Google Scholar 

  224. X. M. Li, M. Y. Jia, M. T. Islam, L. Q. Yu, L. Xing. Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Transactions on Medical Imaging, vol.39, no. 12, pp. 4023–4033, 2020. DOI: https://doi.org/10.1109/TMI.2020.3008871.

    Google Scholar 

Download references

Acknowledgements

Open Access funding enabled and organized by CAUL and its Member Institutions.

Author information

Authors and Affiliations

  1. Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Computer Science, The University of Sydney, Sydney, NSW, 2006, Australia

    Wei-Chien Wang, Dagan Feng & Jinman Kim

  2. College of Science and Engineering, James Cook University, Cairns, QLD, 4811, Australia

    Euijoon Ahn

Authors
  1. Wei-Chien Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Euijoon Ahn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dagan Feng
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jinman Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Wei-Chien Wang.

Additional information

Wei-Chien Wang received the B.Sc. degree in mechatronic engineering from Huafan University, China in 2006, and the M. Sc. degree in manufacturing information and systems from the Cheng Kung University, China in 2008. She is currently a Ph. D. degree candidate in computer science at Biomedical Data Analysis and Visualisation (BDAV), School of Computer Science, The University of Sydney, Australia. She was a full-time research assistant at the Taiwan Normal University, China from 2009 to 2010. She worked as a software engineer at Hi-Lo System Research Co., Ltd., China from 2010 to 2011, and at the Software Design Center, Foxconn International Holdings, Ltd., Foxconn Technology Group, and the FIH Taiwan Design Center, Hon Hai Precision Industry Co., Ltd., China between 2011 and 2012. Since 2013, she has been a research student in Australia, working on various projects in deep learning and computer vision. She has also been a visiting researcher and lecturer with the Penghu University of Science and Technology, China since 2021.

Her research interests include visual deep learning and artificial intelligence of things (AIoT), she now focuses on self-supervised learning for medical image analysis.

Euijoon Ahn received the B. Eng. degree in information technology from the University of Newcastle, Australia in 2009, and the M. Eng. degree in information technology and the M.Phil, degree in computer science from University of Sydney, Australia in 2014 and 2016, respectively. He received the Ph.D. degree in computer science from The University of Sydney, Australia in 2020. He is a lecturer at the College of Science and Engineering, James Cook University, Australia. Prior to this, he was a postdoctoral research fellow at the Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Computer Science, The University of Sydney, Australia.

Dr. Ahn is a member of SICE, IEE, and IEEE. He produced top-tier publications in computer vision and medical image computing, including papers in IEEE T-MI, T-BME, JBHI, MedIA, PR, CVPR, AAAI and MICCAI. He is a regular reviewer for IEEE T-PAMI, T-MI, Nature Communications, CVPR, MICCAI and ISBI. He also works in translational health technology research, especially on health data analytics and telehealth.

His research in the development of machine learning and computer vision focuses on unsupervised and self-supervised deep learning models for biomedical image analysis, to improve image segmentation, retrieval, quantification, and classification without relying on labelled data.

Dagan Feng received the M. Eng. degree in electrical engineering and computer science (EECS) from Shanghai Jiao Tong University (SJTU), China in 1982, and the M. Sc. degree in biocybernetics and the Ph. D. degree in computer science from the University of California, Los Angeles (UCLA), USA in 1985 and 1988, respectively, where he received the Crump Prize for Excellence in Medical Engineering. After briefly working as assistant professor at the University of California, USA, he joined the University of Sydney, Australia at the end of 1988, as lecturer, progressing onto professor in Department of Computer Science and head of School of Information Technologies. He is a professor emeritus at School of Computer Science, The University of Sydney, Australia, and the founding director of the Biomedical and Multimedia Information Technology (BMIT) Research Group. Prof. Feng has led more than 50 key research projects, published over 700 scholarly research papers, pioneered several new research directions, and made a number of landmark contributions in his field. More importantly, however, is that many of his research results have been translated into solutions to real-life problems and have made tremendous improvements to the quality of life for those concerned. He is a fellow of ACS, HKIE, IET, IEEE, and the Australian Academy of Technological Sciences and Engineering (ATSE). He has served as Chair of the International Federation of Automatic Control (IFAC) Technical Committee on Biological and Medical Systems, Special Area Editor/Associate Editor/Editorial Board Member for a dozen of core journals in his area, and Scientific Advisor for a number of prestigious organizations. He has been invited to give over 100 keynote presentations in 23 countries and regions, and has organized/chaired over 100 major international conferences and symposia. He has also been appointed as Honorary Research Consultant, Royal Prince Alfred Hospital in Sydney, Australia; Chair Professor of Information Technology, Hong Kong Polytechnic University, China; Advisory Professor, Shanghai Jiao Tong University, China; Guest Professor, Northwestern Polytechnic University, China, Northeastern University, China, and Tsinghua University, China.

His research interests include biomedical systems modelling, functional imaging, biomedical information technology, and multimedia computing seeks to address the major challenges in “big data science” and provide innovative solutions for stochastic data acquisition, compression, storage, management, modelling, fusion, visualization, and communication. Currently, Prof. Feng and his research collaborators are working on new ways of improving the early detection of diseases such as cancer and dementia.

Jinman Kim received the B. Sc. (Hons.) and Ph. D. degrees in computer science from The University of Sydney, Australia in 2001 and 2006, respectively. He is an associate professor of computer science and the founding director of the Biomedical Data Analysis and Visualization (BDAV) Laboratory at The University of Sydney, Australia. He also serves as an associate director of School of Computer Science’s Biomedical and Multimedia Information Technology (BMIT) Research Group. He coleads the “digital health imaging”, as part of the Faculty of Engineering’s Digital Science Initiative, with the vision and strategy to improve the use and accessibility of medical imaging via AI innovations. Since 2006, he has been a research associate with the university’s leading teaching hospital, the Royal Prince Alfred Hospital. From 2008 to 2012, he was an ARC postdoctoral research fellow, with one year leave from 2009 to 2010 to join the MIRA Lab Research Group, Switzerland, as a marie curie senior research fellow. Since 2013, he has been with School of Computer Science, The University of Sydney where he was a senior lecturer, and was promoted to associate professor in 2016. He continuously publishes in top venues in his field and has received multiple competitive grants and scientific recognition. He is actively involved in his research communities where he is the vice president of the Computer Graphics Society (CGS), A/Editor of Computer Methods and Program in Biomedicine (CMPB), A/Editor of The Visual Computer (TVCJ), and Reviewer for all major journals and conferences in his field. He has actively focused on research translation where he has worked closely with clinical partners to take his research into clinical practice. He is the research director of the Nepean Telehealth and Technology Centre (NTTC) at Nepean Hospital, NSW Health, responsible for translational telehealth and digital hospital research. Some of his research has been developed into clinical software that is being used at multiple hospitals. His work on telehealth has been recognized with multiple awards, including the 2016 Health Secretary Innovation Award from the NSW Ministry of Health.

His research interests include machine learning, biomedical image analysis and visualization, especially multimodal data processing, image-omics, and image data correlation to other health data.

Declarations of Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Colored figures are available in the online version at https://link.springer.com/journal/11633

Rights and permissions

Open Access This article is licenced under a Creative Commons Attribution 4.0 International Licence, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WC., Ahn, E., Feng, D. et al. A Review of Predictive and Contrastive Self-supervised Learning for Medical Images. Mach. Intell. Res. 20, 483–513 (2023). https://doi.org/10.1007/s11633-022-1406-4

Download citation

  • Received: 30 August 2022

  • Accepted: 13 December 2022

  • Published: 03 June 2023

  • Issue Date: August 2023

  • DOI: https://doi.org/10.1007/s11633-022-1406-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Self-supervised learning (SSL)
  • contrastive learning
  • deep learning
  • medical image analysis
  • computer vision
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature