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1 Introduction

In recent years, deep learning networks, such as con-
volutional neural networks (CNNs), have seen massive
progress in image analysis techniques. LeCun et al.ll]
showed that CNNs achieved superior performance on di-
verse computer vision tasks, including semantic segment-
ation, image classification, object detection, and activity
recognition. When a large amount of data and manually
annotated labels are available, CNNs can automatically
learn to approximate the relationship between the data
and its labels. This type of deep learning algorithm is
called supervised learningl?. However, supervised learn-
ing can also be limited by large-scale labelled image data
availability, where manual annotation is costly, labour-in-
tensive, time-consuming, and prone to human subjectiv-
ity and error35l. CNNs have also been broadly applied
with medical imaging modalities and are considered state-
of-the-art in many medical image analysis applicationslS],
such as with breast cancer classification[”), COVID-19 de-
tectionl®l and skin lesion analysisl¥.

A variety of methods have been proposed to address
the problem of limited training images and labels. Trans-
fer learning has become the established method for this
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problem. With transfer learning, the model is pretrained
on a larger image dataset, such as the ImageNet dataset
of labelled natural images, and is then fine-tuned on a
smaller dataset in the target domain that does not need
to be from the same image domain, such as with a type of
medical imaging modality[!9. Although transfer learning
has demonstrated promising results in various medical
imaging analysis applications/!l: 12, there are known limit-
ationsl!0 13, The primary limitation is that the image fea-
tures extracted from the natural image dataset are not
directly relevant to medical imaging datasets. Thus, su-
pervised learning methods optimally designed using nat-
ural images do not necessarily translate well when ap-
plied to medical imaging analysis[!0l. There are several
key differences between medical images and natural im-
ages. As an example, medical images typically involve the
identification of a small part of the images related to its
pathologies or abnormalities, also known as regions of in-
terest (ROIs), by utilizing variations in local textures
from the whole image; examples of these are small red
dots in retinal fundus images which are signs of microan-
eurysms and diabetic retinopathy!!4, and white opaque
local patches in chest X-ray images indicate consolida-
tion and pneumonia. Natural image datasets, however, of-
ten have a large and salient object of interest in images.
Another key difference is that, compared to natural im-
ages with diverse content and colours, a large variety of
medical images, typically from X-ray, computer tomo-
graphy (CT), and magnetic resonance imaging (MRI), are
greyscale and have similar colours and content attributes
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across the image dataset, with fewer diversities and con-
trasts than natural images. Additionally, most medical
image datasets have fewer image samples despite large
variability in the image visual attributes between them,
e.g., the number of images in the medical image datasets
varies from one thousand[’® to one hundred thous-
and[16: 17; in comparison, natural image datasets often
have over 1 million images (e.g., ImageNet). Considering
these differences between natural and medical images,
transfer learning of a natural image pretrained model to
medical image application is not always an effective solu-
tion. He et al.'8l demonstrated that pretraining on Im-
ageNet merely accelerates the model convergence early
during the training process.

To address the scarcity of medical image labels, re-
searchers have been using other deep learning methods
that do not entirely rely on labelled image data, and in-
stead utilize abundant unlabelled image datall% 20, To ad-
dress these issues, LeCunl2!l presented the first concept of
self-supervised learning (SSL) in 2017. His talk at the
AAAT 2020 conference started to attract people's
attention, and people gradually realized SSL had a poten-
tial future. He described, “In SSL, the system learns to
predict part of its input from other parts of its input”.
SSL, as its name implies, creates supervisory information
that is derived from the data itself. As represented in
Fig.1, there are some examples of SSL, such as predict-
ing future data (yellow color) from past data (purple col-
or) and predicting past data from present data (blue col-
or). Taking sequential datasets, e.g., the target objects or
images can be seen as anchors. The objects or images be-
fore these anchors can be seen as past data, while the ob-
jects or images after these anchors can be seen as future
data. SSL has been widely employed in computer vision
applications using natural images. For example, the Boot-
strap your own latent (BYOL)(22 method obtained bet-
ter image classification results than some supervised
learning approaches on the ImageNet dataset. Other ex-
periments(23 24 further demonstrated how SSL could effi-
ciently learn generalizable visual representations from the
images. For example, Tendle and Hasan[?’ analysed the
SSL representations that were trained from the ImageN-
et source dataset and then fine-tuned on two different
target datasets: One that was considerably different from
the source dataset, and the other that was similar to the
source dataset. By investigating the invariance property
of learned representations, such as rotation, scale change,
translation (vertical and horizontal) and background
change, their experiments demonstrated that SSL repres-
entations produced better generalizability in contrast to
supervised learning representations.

Among SSL methods, contrastive self-supervised
learning, or contrastive SSL, is the most successful ap-
proach that achieved outstanding performance close to, or
even surpassing, the supervised learning counterparts/26l.
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Fig. 1 Concept of self-supervised learning[!]

Contrastive learning encourages learning feature repres-
entation with interclass separability and intraclass com-
pactness, which can assist in classifier learning[® 27. More
specifically, intraclass compactness refers to how closely
image representations from the same class are related to
one another, and interclass separability refers to how
widely apart image representations are from different
classes; this is due to SSL capability to learn without la-
bels and therefore being able to leverage large datasets.
Contrastive SSL has already been widely studied among
both natural and medical image domains. There have
been several comprehensive reviews on natural images,
such as contrastive learning of visual representationsl28],
generative learning and contrastive learningl®l, pretrained
language models[?9, and self-supervised contrastive learn-
ingBY. However, these reviews did not focus on medical
images that are different from natural ones with inherent
medical image specific challenges and requirements. In
addition, there were some SSL reviews on medical
images3l: 32 Some of them discussed three categories, in-
cluding predictive, generative, and contrastive learning,
but in the contrastive learning category, the authors did
not divide it into subsections and provide structured por-
tioning of the work. However, our paper exclusively fo-
cused on predictive and contrastive learning and used
subsections to describe more details of the related back-
grounds. In this study, we provide a state-of-the-art re-
view of SSL research, focusing on predictive learning and
contrastive SSL learning, and their adaptation and op-
timization for the medical imaging domain. With the fo-
cus of our paper on medical images, where possible, we
have used medical images in our example figures. Our
contributions are as follows: Section 2 introduces a sys-
tematic categorization of the state-of-the-art predictive
learning and contrastive SSL methods and discusses their
methodology; these methods are based on natural images.
Section 3 presents a review of predictive learning and
contrastive SSL methods applied to medical images and
their unique adaptations from the natural image method
counterparts. Section 4 concludes the review and dis-
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cusses the limitations of predictive learning and contrast-
ive SSL on medical images and makes suggestions for fu-
ture research and directions.

2 Predictive learning and contrastive
self-supervised learning

2.1 Predictive learning

By predicting geometric transformations of images,
predictive learning tasks learn the structural and contex-
tual semantics. Three types of spatially relevant position
pretext tasks, as shown in Fig. 2(a), were described in this
section: relative position, solving jigsaw puzzle, and rota-

tion.
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Fig.2 Categorization of predictive learning and contrastive
self-supervised learning: (a) Categorization of predictive learn-
ing; (b) Categorization of contrastive SSL.

2.1.1 Relative position

The relative position model33 was trained to learn the
relationships between a selected patch and the patches
around it. The relative position model selected a particu-
lar size of the area of an image sample and divided this
area into a certain number of disconnected patches. The
number and the area in a patch, as shown in Fig.3, were
used to learn the relationship between the centre patch,
called the anchor, and the neighbouring patches. As a
result, the model learned the relationships between the
patches. It is worth noting that the gaps between patches
and the random displacement of patches prevent the
model from learning the shortcut. Such a shortcut might
be provided by low-level indications like boundary pat-
terns or textures that continue between patches. There
were three disadvantages with the relative position ap-
proach. First, multiple different objects could be in-
cluded in two individual patches. For example, one patch
contained the left atrium and another patch consisted of
the right atrium. There was no relevance between these

Gap

Fig. 3 An example of the predicting relative spatial position(33l
pretext task on a CT lung image. The algorithm is trained to
learn the relationships between a selected patch (blue centre)
and the patches around it (red numbered patches).

two objects that are only located in the individual
patches. As a result, no information could be learned
about the relationship between those two objects. Second,
in the relative position approach, CNNs could learn trivi-
al features, such as the shared corners or edges of
patches, instead of semantic feature representations that
are beneficial to downstream discriminative tasks, includ-
ing segmentation and classification tasks. Although some
methods, such as randomly jittering patches, were de-
signed to prevent the model from learning trivial features,
there are possibilities that patch positions would be
learned from other places, such as background patterns.
Third, since the relative position approach only involves
the patches, it did not include the global information of
images. This led to limited performance on downstream
tasks that rely on global information of images, such as in
image classification tasks. However, some of these tasks
counted on ad hoc heuristics that might restrict the
transferability and generalization of learned feature rep-
resentations for the following downstream tasks.
2.1.2 Solving the jigsaw puzzle

One additional type of relative position was termed as
“solving the jigsaw puzzle”[34. The principal idea of this
pretext task was to learn positional relations among di-
vided patches of an input sample. In this approach, by
solving the jigsaw puzzles, the algorithm learned to recog-
nize the elemental structure of the objects, including ob-
jects and their relative parts. As shown in Fig.4, within
an image sample, the jigsaw puzzle solution first selected
a particular size of the area that was relevant to the top-
ic of interest. Then, this area was divided into nine puzzle
patches shuffled based on the nine predefined permuta-
tion sets as inputs. The model was trained to learn fea-
ture representation by correcting the order of those nine
patches. The sequence of nine patches was used for the
training model. The greatest challenge of the jigsaw
puzzle was that the model required greater computation-
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Fig. 4 An example of the “solving the jigsaw puzzle”[3 pretext task on an X-ray pneumothorax image. The algorithm is trained to
learn the positional relations among nine divided patches (yellow-framed patches).

al complexity and memory consumption. Noroozi and
FavaroB34 also extended this to more complicated pretext
tasks, such as the setting of 64 predefined permutations,
demonstrating that more information on relative position
can be learned.
2.1.3 Rotation

Another context-based pretext task was designed for
learning high-level semantic features by training the mod-
el to predict the degrees to which the input images were
rotated. The rotation angle could be seen as a pseudo la-
bel for training the model. This is exemplified in Fig.5.
The results of [35] showed that CT lung images rotated
by angles of 0, 90, 180 or 270 degrees learn better feature
representations than those rotated by other degrees. Li et
al.B% also conducted research based on the rotation pre-
text task in which the angle was an expansion to 360 de-
grees. Lee et al.l37 trained the model with multiple pre-
text task learning strategies, including two types of trans-
formations, rotations, and color permutation, as those
various self-supervised data augmentations enabled the
reduction of the effects from the transformation invariant.
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Fig.5 An example of the predicting image rotations[3® pretext
task on a CT lung image. The algorithm utilizes the rotation
angle as a kind of supervision for training the model.

2.2 Contrastive self-supervised learning
Contrastive learning is a method to learn feature rep-
resentations via contrastive loss functions to distinguish

between negative and positive image samples. Positive
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image samples are an augmentation of a target image
(also called an anchor), while negative image samples are
from other nontarget samples within the training set. The
contrastive learning approach encourages models to learn
general-purpose feature representations that can be re-
used to enhance learning specifically in downstream tasks,
e.g., segmentation and classification tasks, where the
models are built using the learned features38l.

Contrastive learning methods typically vary in how
they use unlabelled data to create or define negative and
positive image pairs and in how they are sampled during
training. Based on the idea of Liu et al.Bl, contrastive
learning categories are divided into two subcategories:
context-instance contrast and instance-instance contrast.
The context-instance contrast, also known as the global-
local contrast, is concerned with modelling the relation-
ship between a sample’s local feature and its global con-
text representation. Instance-instance contrast investig-
ates the connections between the instance-level local rep-
resentations of distinct samples. However, these two cat-
egories do not cater to the specific needs of sequential im-
age or time series datasets. Any data that have elements
that are arranged in sequences are referred to as sequen-
tial datal9. Sequences of user actions, time series, and
DNA sequences are a few examples. Yue et al.40 men-
tioned that time-series medical images include rich spa-
tial and temporal information. Therefore, we suggest a
third category named temporal contrast, which is related
to SSL designed for sequential datasets. The three cat-
egorizations of contrastive SSL are shown in Fig.2(b).

To train on unlabelled data, SSL uses “pretext” tasks
as an alternative way to extract useful latent representa-
tions. By solving the pretext tasks, pseudo labels, as su-
pervisory signals, are generated automatically based on
the dataset’s properties. For example, with the rotation
pretext task, the supervisory signals of “rotation angles”
are derived from the unlabelled input samples. There are
two different application paradigms for downstream tasks
using the pretext task results. Fig.6(a) shows that the
first paradigm is learning transferable features. After solv-
ing the pretext tasks, the model will try to learn feature
representation, which can then be further trained, e.g.,
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Fig. 6 Two different application paradigms for downstream tasks. In (a), further training such as fine-tuning is needed; while in (b), no

annotation is needed for downstream tasks.

fine-tuning for different tasks such as classification and
detection. In contrast, Fig.6(b) illustrates an example of
learning “applicable embeddings” that refers to the pre-
text tasks used to directly learn generalizable features for
downstream tasks.

Various pretext tasks are designed with those different-
augmentation transformations to capture the expected se-
mantic or structural characteristics of images for down-
stream tasks. Before diving into subcategories, the con-
trastive learning loss function is defined in Section 2.2.1
for a fundamental understanding of SSL. Then, context-
instance contrast learning and instance-instance contrast
learning are described in Sections 2.2.2 and 2.2.3, respect-
ively. Finally, temporal contrast is introduced in Section 2.4.
2.2.1 Contrastive learning

To learn meaningful features from the images, SSL
uses “data augmentation” techniques to generate addi-
tional data by increasing the diversity of the data trans-
formation. Data augmentation involved image manipula-
tion techniques, i.e., image scaling, cropping, flipping,
padding, rotation, translation, and color augmentation,
such as brightness, contrast, saturation, and hue. The
fundamental concept of contrastive learning was to group
the images with their augmentations closer together and
place the other images further away. This description can
be expressed as

score (f (z), f (z%)) > score(f (), f(z7)) (1)

where f(z) is an encoder. The target image (also called
an anchor), z, and the anchor’s augmented sample, x™,
can be grouped as a positive pair. However, the anchor
and other sample from the training dataset, =, are
grouped as a negative pair. As a result, the score of the
similar sample, = and z7, is higher than that of the
dissimilar samples, x and x~. This score is a metric that
compares the similarity between the two samples. Based
on this concept, the following subsections discuss several
common loss functions used in SSL.

Triplet loss

Triplet lossi#l is a type of metric learning with a simil-
ar concept to (1), with changes in how it calculates the
distance on the embedding space. In detail, minimizing
the triplet loss, as in (2), encourages the distance between
the anchor and the positive sample to 0; and the dis-
tance between the anchor and the negative sample to be
greater than the distance between the anchor and the
positive sample plus with margin. When the representa-
tions created for a negative pair are distant enough, the
purpose of the margin is to prevent effort wasted on en-
larging this distance.

£ = max (d(z,z7) — d(z,z”) + margin, 0) (2)

where d (w,ac*) denotes the distance between the anchor
and the positive sample, and d(m,x_) represents the
distance between the anchor and the negative sample.
The margin parameter is set to represent the minimum
offset between the distances of the pairs.

Noise-contrastive estimation (NCE) loss/*? and
InfoNCE loss[43]

To decrease the complexity of optimization, NCE was
introduced to transform the calculation from multiclass
classification problems to a binary logistic regression to
classify data from noises. Inspired by NCE loss, InfoNCE
loss used categorical cross-entropy loss to find positive
samples from a collection of unrelated noisy samples. In-
foNCE used a similar data pattern for training, including
one positive sample and many negative samples.
However, InfoNCE loss often generated higher accuracies
due to the selection of negative samples. This was ex-
plained by the grouping of the negative samples in the
NCE algorithm as a unit for calculating an approximate
value, while InfoNCE calculated the negative samples as
an individual sample and hence can keep more informa-
tion about each of the data points. InfoNCE is formu-
lated as
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where fi (z¢+r,Ct) represents the density ratio, t+k
denotes the future time steps after ¢ from the dataset,
{l"tfm ce fx (It+k, Ct)
and fr (zj,C:) can be seen as the positive sample pair

JTt—1,Ty -, Tepk} € X, where
and negative sample pair, respectively, in the collection of
samples, C;.

Mutual information (MI)

Mutual information[# is a concept of reducing uncer-
tainty about one random sample after observing another
sample. Simply put, MI is a measure for assessing the re-
lationship between arbitrary variables!45l. For example,
Linskerl46] presented the InfoMax principle by using MI to
calculate the relationship between the input and the out-
put in the presence of processing noise. The relationship
between InfoNCE and MI has been used in many state-
of-art contrastive learning methods, and after optimizing
(3), it can be expressed as

I (x¢4k,Ct) > log (N) — ﬁtl)ft (4)

where I(z¢4x,Ct) is equal to or larger than log (IV), and N
is the number of samples, minus the optimized InfoNCE,
ﬁ?\f’t.

2.2.2 Context-instance contrast learning

Spatial context from images could be used to learn
feature representations. It was originally from the concept
of the skip-gram Word2Vecl#l algorithm used in natural
language processing (NLP) and later implemented for im-
ages by Doersch et al.33l With spatial context, feature
representations were learned by predicting the position of
an image patch relative to other patches. The context-in-
stance contrast learned the relationship between local and
global image features. The idea of context-instance con-
trast was to capture the local features that can ad-
equately represent the global features. In this category,
the most popular algorithm is maximizing MI.

Maximizing MI

Unsupervised learning of feature representations could
be achieved by maximizing the MI between an input im-
age and the output encoded by a deep neural network.
The principle of high MI captures useful information
rather than low-level noise. Tschannen et al.l*4 conduc-
ted research on MI maximization for unsupervised or self-
supervised representation learning, including deep In-
foMax (DIM)M8], contrastive multiview coding (CMC)19],
and contrastive predictive coding (CPC)A43].

Deep InfoMax (DIM)MS] and augmented multiscale
DIM (AMDIM).5% Hjelm et al.48] showed that, depend-
ing on the downstream task, it is often insufficient to
learn effective representations by maximizing the MI
between the encoder output (i.e., global MI) and the en-
tire input. This was because global MI maximizes MI
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between global representation pairs, which included an
entire image together with a single feature vector sum-
marized from patches divided from the results of encod-
ing input images. However, global Infomax has the prob-
lem that the model captured undesirable information such
as trivial noise that was particular to local patches or
pixels and that was useless for certain tasks such as im-
age classification. This was because grabbing feature in-
formation particular to only belonging parts of the input
through encoders did not enhance the MI with other
patches that did not include those trivial noise. Hence,
this issue arose the idea of local Infomax to encourage the
encoders to learn feature representation that is shared
across the patches of an input image. Hjelm et al.[8l
showed that adding location information of the input in-
to the object enables a considerable increase in a repres-
entation’s fitness for subsequent tasks. Hence, they pro-
posed the ideas of global DIM and local DIM to train the
encoders by maximizing MI between global and local
patch features. Local infomax maximizes MI between the
summarized patch feature vector and each local patch
feature, where both are extracted from different layers of
the same structure of the convolutional network. Later,
Bachman et al.5% extended the idea of local DIM by
maximizing MI between features generated through aug-
mentation of each input image. The author improved the
local DIM from the following three perspectives: data
augmentation, multiscale mutual information, and en-
coder. For data augmentation, they first performed a ran-
dom horizontal flip and then some common data aug-
mentations, including random in the crop, jitter in color
space, and grayscale transformation. This model learned
features by maximizing MI between the global and aug-
mented local features. To determine the similar part in
augmented local features and global features. For
multiscale mutual information, the model learned fea-
tures by maximizing MI within features from different
layers with different scales. The MI between multiscale
features in the same images was higher than that in dif-
ferent images. For the encoder, AMDIM improved the en-
coder based on the ResNet-based framework to control
receptive files. The result was worse when there was too
much overlap within the features of positive sample pairs.

Contrastive predictive coding (CPC).143. 511 Contrast-
ive predictive coding(52 53] focused on sequential data and
utilizes useful information of previous sequential compon-
ents of the data to predict the future sequential signal.
During the predictive coding, the information of image
content was embedded. Using autoregressive models,
CPC encoded key shared information within different
parts of the previous sequential signal to high-level lat-
ent space, and this was used to predict the future that
conditionally relies on the same shared information. This
resulted in keeping a similar representation from the same
images encoding more global and common features, and
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discarding low-level information and local variations, such
as noise. Additionally, the use of probabilistic contrastive
loss for learning high-dimensional representations in lat-
ent embedding space maximized useful information for
predicting future samples. Based on the ideas of NCE,
CPC proposed InfoNCE and its relationship with MI.
That is, minimizing the InfoNCE loss enabled maximiz-
ing a lower bound on MI between representations that
were encoded.

2.2.3 Instance-instance contrast learning

Under the instance contrast learning(® category, in-
stance comparisons were used from two points of view.
The first was to design or modify contrastive loss func-
tions and use specific structures for training SSL (see-
Section 2.3.1). The second was to directly compare in-
stances to derive distinctive information within the in-
stances (see Sections 2.3.2 and 2.3.3).

SSL design on contrastive loss function-based
variation and specific structures

Within many strategies of designing SSL models, we
discuss two ideas based on either the varied contrastive
loss functions or the specified structure in the subcategor-
ies.

SSL design on contrastive loss function-based vari-
ation. When contrastive loss functions are designed or
modified based on the principle of (1), they had been ap-
plied to many different tasks for specified learning ap-
proaches. The five learning approaches introduced in this
section are 1) multimodal learning, 2) local representa-
tion learning, 3) multiscale learning, 4) texture represent-
ation learning, and 5) structural representation learning.

1) For multimodal learning, most papers conducted
SSL research on only one modality dataset. Hence, some
studies have started working on multimodal SSL training
to learn more meaningful semantic information that
might compensate for each other. For computer vision,
multimodality could group different types of resources,
such as text and images, or different types of data
formats, such as CT, X-ray, and MRI. 2) For local rep-
resentation learning, most of the common instance-in-
stance contrast learning methods concentrated only on
extracting image-level global consistency between in-
stances but neglect explicitly learning the distinctive loc-
al consistency within the instances. Distinctive local rep-
resentations played a vital role in obtaining structural in-
formation for dense or per-pixel prediction tasks, includ-
ing segmentation. 3) For multiscale learning, some medic-
al data were large, such as histology images. Such large
images as input for training the network slowed down the
calculation and increased the training time. Hence, for
the domain of histopathology, some studies used relat-
ively small areas or objects, such as nuclei, to predict
whole histology images. However, some works utilized a
variety of sizes of input for the training model and Yoo et
al.[53] demonstrated how multiscale local activations could
enhance visual representation based on CNN activations.

Finally, some SSL works designed the contrastive loss for
learning 4) texture representation and 5) structural rep-
resentation, respectively.

SSL design on specific structures. Except for the
design and modification of contrastive loss functions and
the selected sample strategies, some works focused on the
specific structures for training SSL, such as Siamese-
based learning, and teacher-student-based learning. For
Siamese network learning, a Siamese neural network in-
cluded two or more identical subnetworks that were used
to estimate the similarity between two samples by two
feature extractors with shared weights, and were utilized
in many applications, such as the prediction of camera
posesl58 and lip posesl57. A large number of batch sizes or
negative pairs applied in common SSL methods made
them more difficultly be implemented on 3D medical
datasets. Chen and Hel58! proved that the Siamese net-
work could be used to avoid such problems on a 2D net-
work. In addition, without relying on larger batch sizes or
negative pairs, the Siamese network enabled model to
keep the spatial relationship in the embedding space
through contrastive loss. For the teacher-student-based
learning, teacher-student learning was a transfer learning
approach in which the student network was taught by
the teacher’s network to predict the same result as the
teacher’s. A small network, the student network, could be
learned by the labels produced by a complex model, the
teacher network. Moreover, the mean teacher model, an
extended model based on the teacher-student, was imple-
mented for the medical image analysis tasks to average
model weights to aggregate information after every step
instead of every epoch. The mean teacher model also
provided more robust intermediate representations since
the weight averages captured all layer outputs, not just
the top output.

Instance-based discrimination

There were a variety of techniques designed for col-
lecting negative samples to compare with a positive
sample in the training process, such as memory bank, mo-
mentum encoder pretext-invariant representation learn-
ing (PIRL)3, simple framework for contrastive learning
of visual representations (SimCLR)2%, momentum en-
coder and momentum contrast (MoCo)[17 5% 601 and boot-
strap your own latent (BYOL)[22l. Although for different
purposes, these methods could be considered to create dy-
namic dictionaries. In these dictionaries, the “queries”
and “keys” were obtained from data, e.g., patches or im-
ages, which were embedding representations created
through the query and key encoder networks, respect-
ively. These encoders could be any CNNsl6ll. SSL trained
encoders to execute dictionary look-up: An encoded
“query” should be comparable to its corresponding key
while being distinct from others. The definition of query
and key could be different. For example, Wu et al.[54
grouped a key and a query as a negative pair if they came
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from a different image and otherwise as a positive sample
pair. However, Ye et al.[62] selected two random “views”
of the same image using random data augmentation to
create a positive pair. It is worth noting that inconsist-
ency was a major challenge in this method. Inconsistency
existed between the query and key embedding representa-
tion. Specifically, inconsistency occurred when calculat-
ing the contrastive loss between the positive features from
the query encoder that was updated each epoch and the
negative features saved in the memory that was updated
from several previous epochs. Hence, many approaches
were proposed to solve this inconsistency. He et al.[19 hy-
pothesized that it was possible to create consistent and
large dictionaries during the training process and that in
the dictionary, the keys should be represented through
the similar or same encoder to provide consistency in
comparisons to the query.

Memory bank and MoCo.['9 Based on the principle of
contrastive loss, the number of negative samples signific-
antly affected the accuracy, which was proven by Noza-
wa and Sato.l%3] In one batch, it included an original im-
age, its augmented example, and many negative samples.
The number of negatives sampled depended on the batch
size, and a large batch size means that we could contain
more negative samples. However, the batch size was lim-
ited by the GPU memory size. The memory bank was de-
signed to address this problem by accumulating and regu-
larly updating many embeddings of negative samples that
resulted from the key encoder without increasing the
batch size but with less gradient calculation from the en-
coded key query during training. PIRL learned invariant
representations by using a memory bank based on a pre-
text task related to solving the jigsaw puzzle.

Although memory banks could contain a larger num-
ber of negative samples, inconsistency existed between
the query and key embedding representations that resul-
ted from the query and key encoders, respectively. To ad-
dress the inconsistency problem, MoCo decoupled the
batch size from the negative samples by replacing the
memory bank with a moving-averaged encoder called the
momentum encoder. This momentum encoder was built
as a dictionary-like queue that progressively replaced
samples by enqueuing the current mini-batch and
dequeuing the oldest mini-batch in this queue. The bene-
fit of removing the oldest mini-batch that was outdated
was to maintain consistency with the newest samples
from the query encoder. By doing this, the number of
negative samples could be increased without expanding
the batch size. In brief, MoCo decreased the dependency
on mini-batch size and utilized a momentum encoder to
update the queue that involves previously processed
samples to create contrastive pair encodings. This was
defined as follows:

0 < MmO, + (1 — m)eq (5)

@ Springer

Machine Intelligence Research 20(4), August 2023

where the momentum coefficient, m, made the key
encoder, 0, slowly progress, driven by the query encoder,
04, (1 —m). He et al.'9 proved that the performance was
the best when m was 0.99 because this setting updated
the key encoder slowly through a large part of the
previous key encoders and a small part of the newest
query encoder. This could keep a large and consistent
dictionary that facilitates contrastive learning to train a
visual representation encoder. Based on MoCo, the same
team further designed MoCo v2[17l by adding a multilayer
perceptron (MLP) projection head, data augmentation,
and a cosine learning rate schedule.

SimCLR.2" SimCLR was an end-to-end learning ar-
chitecture and learned feature representations by maxim-
izing the agreement between dissimilar augmented views
of the same input via a contrastive loss calculation(64],
Through experiments, the results of SimCLR showed four
components that affect the quality of contrastive repres-
entation learning. The combination of data augmentation,
random cropping, and color distortion was shown to be
better than other combinations or single transformations.
Moreover, compared to supervised contrastive learning,
unsupervised contrastive learning obtained greater ad-
vantages from longer training, larger batch sizes, and
stronger data augmentation. However, similar to super-
vised learning, contrastive learning obtained an advant-
age from a deeper and wider framework. It is worth not-
ing that the introduction of the nonlinear projection head
significantly improved the learning representations dur-
ing training. Based on SimCLR, the same team further
improved three steps for designing a semisupervised
learning framework called SimCLR v2[63],

Contrastive multiview coding (CMC).[*9 Unlike DIM,
CPC, and AMDIM, which used one view of the image,
CMC worked on images that were acquired in more than
one view. The goal of CMC was to learn feature repres-
entations with information shared between various sens-
ory channels obtained from the same image. Specifically,
CMC used NCE-based softmax cross-entropy loss to learn
feature embeddings by maximizing MI between various
views from the same scene. A 4-view dataset, RGB and
depth (RGBD)[66] from the same scene, was brought to-
gether in embedding space as positive samples, but the
views from different scenes were pushed apart as the neg-
ative sample. CMC also proposed “core view” and “full
graph” paradigms. The full graph outperforms not only
because more cross-view learning could obtain better rep-
resentation but also because the full graph can deal with
missing information of views.

Bootstrap your own latent (BYOL).[?2] Some contrast-
ive learning methods in Section 2.3.2, such as SimCLR
and MoCo, relied heavily on many negative samples for
learning the discriminative features. Hence, those meth-
ods were sensitive to selecting data augmentation policies
and require many trials to determine good data augment-
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ationl6”, 68]. Moreover, SimCLR required a long training
time on large datasets, out of 3 200 epochs on the 1.2 mil-
lion ImageNet images[], to obtain improved performance.
Unlike SimCLR, BYOL used mean squared error (MSE)
rather than a contrastive loss, so as to rely less on the
availability of large-scale negative samples.

Cluster-based discrimination

In computer vision, clustering algorithms were a class
of unsupervised learning techniques that have been
largely researched and applied. Although clustering tech-
niques were the first stage of success in classifying images,
relatively few papers introduced applying them to CNNs
end-to-end training on large scale datasetsl™ 71, A prob-
lem is that clustering techniques were primarily built on
linear models for calculating the top of fixed features, and
they seldom function when the features must be simul-
taneously learned.

Based on the clustering technique, DeepCluster was
designed to simultaneously learn the features’ cluster as-
signments and the neural network’s parameters. More
specifically, they iteratively clustered the features with a
normal clustering algorithm, k-means, and utilized the
cluster assignments as supervision signals to learn the
parameters of the network. Unlike context instance con-
trast, clustering had the benefits of needing little domain
knowledge and no particular signal from the inputs. In
addition, some contrastive learning methods highly de-
pended on the online calculation of many pairwise fea-
ture comparisons. Hence, the authors of swapping assign-
ments between multiple views (SwAV)[™ designed an on-
line algorithm with a cluster-based idea to reduce the
amount of computation. SWAV employed a “swapped”
prediction technique in which the cluster assignments of
one view were predicted based on the representation of
another view. This method could work in large and small
batch sizes without needing a momentum encoder or a
large memory bank. A multicrop technique was designed
by making use of smaller-sized images to boost views
without raising a training’s memory or processing de-
mands.

2.2.4 Temporal contrast
Medical imaging datasets, of CT or MRI, sometimes

Negative I
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have follow-up scans with spatial or structural informa-
tion. A sequence of CT or MRI, such as from left to right
or from top to bottom of the patient’s body, assists in
learning more semantic representations. Compared to 2D
data, videos or image sequences have richer information
that allows better feature representation to be learned
through SSL. There are three common types of 3D SSL,
including finding the similarity of adjacent frames, track-
ing the objects, and correcting the temporal order.

Finding similarities of adjacent frames

First, adjacent frames should share similar features(7l.
By training CNNs to learn the similarities within neigh-
borhood frames, contextual semantic representations
could be learned. Moreover, temporal continuity™ in
sports activities, such as playing table tennis, and the
characteristic of frames expressing a swing action should
also be smooth. In this case, in the same sequence, the
adjacent frames selected within a small design range were
closer in embedding space than, frames selected from dis-
tant timesteps, as shown in Fig.7. In addition to learn-
ing from the same video, Sermanet et al.["% also learned
from multiview (multiple modalities) videos to obtain
viewpoint and agent invariant feature representations. In
this case, positive paired images obtained simultaneously
with different viewpoints were closer in the embedding
space than negative paired images obtained from a dis-
similar time in the same sequence.

Tracking the objects

Second, based on visual tracking-provided supervision
for training models, Wang and Gupta.[™ learned visual
representations by unsupervised tracking within thou-
sands of unlabelled moving videos. More specifically, two
frames connected by a track should share a visual repres-
entation in feature space, such as cycling, because they
probably corresponded to the same target of the moving
object or were part of the object. Based on this idea, Walker
et al.l"7 utilized CNNs to learn similar objects that shared
similar visual representations, and Purushwalkam et
al.[’8, 7] researched human poses. In this casel™l, designed
a ranking loss function to encourage, in feature space, the
first two frames connected through a track to be much
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Positive range
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Fig. 7 Selection of positive samples and negative samples from a set of adjacent frames
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closer than the first frame and a random frame.

Correcting for the temporal order

Third, it was a method to learn visual representation
through an unsupervised sequential verification task,
which corrected frame order from a sequence of video
frames/80-82), In this case, the correct order was a positive
sample, and the wrong order was a negative sample, as
shown in Fig. 8.

3 Predictive contrastive SSL applied to
medical images

Contrastive SSL has been broadly applied and optim-
ized for medical images. Four forms of contrastive SSL
were commonly applied to medical images: contrastive
learning estimation, context-instance contrast learning,
instance-instance contrast learning and temporal con-
trast SSL.

3.1 Predicting learning for medical image
analysis

3.1.1 Relative position

SSL based on the relative position approach was also
used in the medical areal® for learning useful semantic
features by utilizing image context restoration. Architec-
ture with the combination of multiple SSL. methods was
used, including relative position prediction33], coloriza-
tion84, exemplar CNNs[®3, and inpainting[86l. In particu-
lar, the relative position was used to find the relationship be-
tween the central patch and eight nearby patches with in
a selected 3 x 3 patch grid. Inspired by the work of con-
text prediction of adjacent patchesi33, Blendowski et
al.87l proposed self-supervised 3D context feature learn-
ing, which included a new idea of image-intrinsic spatial
offset relations with a heatmap regression loss. Jana et

al.B8l used image context restoration[®3 as the pretext
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task for checking nonalcoholic fatty liver disease that led
to granular textural changes in the liver and could pro-
gress to liver cancer. Since one of the signs of nonalcohol-
ic fatty liver disease was texture change in the liver, Jana
et al.l8] encouraged the network to learn neighboring
pixel information for downstream tasks, including fibrosis
and NAS score prediction. Based on [33], Li et al.’9 ana-
lysed the issue of COVID-19 severity assessment by train-
ing the SSL model to predict the relative location
between two patches of the same CT slice. Fashil%
utilized the primary site information as pseudo-labels and
modified the histopathology patch order for the training
feature extractor. The added supervised contrastive learn-
ing loss boosted more robust feature representations for
WHSI classification.
3.1.2 Solving jigsaw puzzles

Based on solving jigsaw puzzles, SSL was applied to
learn useful semantic features by blending patches from
various medical imaging modalitiesll. This multimodal
jigsaw puzzle task first drew random puzzle patches from
dissimilar medical imaging modalities and combined them
into the same puzzle. Combining these medical imaging
modalities at the data level encouraged the model to de-
rive modality-agnostic representations of the images and
derive modality-invariant views of the objects, including
tissues and organ structures. The learned feature repres-
entations from many medical imaging modalities could
contain cross-modal information, which combined comple-
mentary information across the modalities. Taleb et al.[%!]
augmented multimodal data using cross-modal genera-
tion techniques to address modality imbalance problems
in real-world clinical situations. In addition, their two
modality experiments showed that the proposed mul-
timodal puzzles learn powerful representations, even when
the modalities were nonregistered. One was on prostate
segmentation of two MRI modalities, and the other was
on liver segmentation of both CT and MRI modalities.

Frame 7+ 2

Fig.8 Positive slice examples (correct order) and the negative slice examples (incorrect order) from a video are trained to learn the

semantic representations.
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By increasing performance on downstream tasks and data
efficiency, it summed up that the multimodal jigsaw
puzzle created better semantic representations when com-
paring the performance on each modality independently.
Later, the same team proposed multimodal puzzle solv-
ing as a proxy task to assist feature representation learn-
ing from multiple image modalities®?l. Navarro et al.[%3
compared and assessed the robustness and generalizabil-
ity of both SSL and fully supervised learning networks on
downstream tasks, including pneumonia detection in X-
ray images and segmentation of various organs in CT im-
ages. By solving jigsaw puzzles on those medical datasets,
they summarized that they efficiently learned feature
mapping of object parts and their spatial arrangement
through SSL. Based on the idea of a jigsaw puzzle-solv-
ing strategy, Manna et al.l%¥ learned spatial context-in-
variant features from magnetic resonance video clips to
check knee medical conditions. They mentioned that the
first work applied SSL to class imbalanced multilabel
magnetic resonance (MR) video datasets. Based on the
jigsaw puzzles transformation34, Li et al.l%] designed a
self-supervised network by modifying two processes. The
first was to increase the variety of permutations, and the
second was to merge the jigsaw puzzles pretext task into
the end-to-end semisupervised framework. They applied
the proposed semisupervised learning method to two
medical image segmentation tasks, including nucleil%-9]
segmentation and skin lesion[99101] segmentation. To clas-
sify cervix images as normal against cancerous, Chae et
al.[l92] presented a new SSL patch based on puzzle pre-
text tasks to predict the relative position. They found
that the pivotal area of the image to search for cervix
cancer was highly potential around the centre and the ir-
relevant parts were near the periphery. In the domain of
histopathology, based on the relative patch algorithm,
Santilli et al.l'03] implemented domain adaptation from
the skin to breast spectra because of the low-level re-
semblance in the outline between skin tissue and breast
cancer. They applied a relative patch pretext task for
training on skin data to learn positional relations among
divided patches of an input sample and then transferred
the learned weights to the following downstream task,
breast cancer classification. Zhuang et al.[194 105] and Tao
et al.[16] inspired by the jigsaw puzzle, proposed a novel
3D proxy task by playing a Rubik's cube, called Rubik’s
cube recovery. Since the jigsaw puzzle was designed for
2D data, Rubik’s cube recovery was introduced for 3D
volumetric data. During Rubik’s cube recovery process,
rich feature information from 3D medical images was ob-
tained, including cube rearrangement and cube rotation.
This enforced the model to learn the features invariant
from both translational and rotational perspectives. It is
worth noting that the difficulty increased when the cube
rotation operation was added to Rubik’s cube recovery, as
it encouraged networks to exploit more spatial informa-
tion. Li et al.l07 extended Rubik’s cube by adding a ran-

dom masking operation to obtain feature representations
from COVID-19 and negative CT volumes.
3.1.3 Rotation

Li et al.l'08 observed that each fundus image included
obvious structures, such as the optic disc and blood ves-
sels, that were sensitive to orientations. Hence, they pro-
posed a rotation-oriented collaborative approach to learn-
ing complementary information, including rotation-re-
lated and rotation-invariance features. With these two
pretext tasks, vessel structures in fundus images and dis-
criminative features for retinal disease diagnosis were
learned. In addition to the rotation pretext task, Yang et
al.ll%9] applied elastic transformation prediction[!1%, to
cross-modality liver segmentation from CT to MR. In-
spired by [35, 111, 112], Liu et al.l''3] presented SSL
based on a 3D feature pyramid network for assisting
multiscale pulmonary nodule detection. Dong et al.[l4]
classified focal liver lesions by utilizing several relative
position pretext tasks, such as predicting the relative pos-
ition between patches of an input, predicting the rotation,
or solving a jigsaw puzzle. Imran et al.l’% presented a
new semisupervised multiple-task model utilizing self-su-
pervision and adversarial training to classify and seg-
ment anatomical structures on spine X-ray images. Sever-
al pretext tasks were used several SSL simultaneously for
medical imaging analysis, such as the studies that worked
on the combination of rotation prediction(3® and jigsaw
puzzle assemblyl34. However, Tajbakhsh et al.l'16 com-
bined two different types of SSL, such as rotation (con-
trastive SSL) and reconstructionl!!” and colorization11#l
(generative SSL), on retinal images for diabetic retino-
pathy classification. In histopathology, Koohbanani et
al.[119] utilized and combined various self-supervised tasks
for domain-specific and domain agnostic purposes to ob-
tain contextual, multiresolution, and semantic features in
pathology images. Vats et al.l!20] adopted those two pre-
text tasks for wireless capsule endoscopy diagnosis.

3.2 Contrastive learning estimation for
medical image analysis

To focus on abnormalities, Liu et al.['2l] introduced a
learnable alignment module into contrastive learning to
alter all input samples to be geometrically canonical.
More specifically, after extracting high-level feature rep-
resentations of the image pair, the highly structured char-
acter of inputs was used to calculate the L1 distance
between corresponding pixels on the positive and negat-
ive images. The result could be seen as an indication of
possible lesion location on the latter. Their model could
alleviate the difference in scales, angles, and displace-
ments of X-ray samples created under bad scan condi-
tions. They demonstrated that the learned features rep-
resent localization information that enabled better identi-
fication and localization of downstream tasks, including
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infiltration, mass and pneumothorax diagnosis.
3.2.1 Contrastive learning

Triplet loss for medical application

Xie et al.22] proposed a novel SSL framework with
scalewise triplet loss and count ranking loss to encourage
a neural network to automatically learn the information
of nuclei quantity and size from the raw data for nuclei
segmentation.

Noise-contrastive estimation lossl®2 and In-
foNCE[4 for medical image analysis

Sun et al.123] presented a context-aware self-super-
vised representation learning approach for learning ana-
tomy-specific and subject-specific representations at the
patch and graph levels, respectively. Interestingly, they
utilized InfoNCE loss to learn patch-level textural fea-
tures and contrastive learning objectives for learning
graph-level representation. They also took advantage of
MoCo, including a queue of data samples and a mo-
mentum update scheme to enhance the number of negat-
ive samples during training. The features learned through
the proposed method demonstrated better performance in
staging lung tissue abnormalities associated with COVID-
19 than those learned by other unsupervised baselines,
such as MedicalNet, Models Genesis, and MoCo. Most ex-
isting methods that used the maximization of MI as con-
trastive loss utilized image pairs for training; however,
Zhang et al.l'24l made use of image-text pairs. Their work
enhanced the visual representation learning of medical
images by taking advantage of the combined information
from textual data and image pairs. Through a bidirec-
tional contrastive objective loss between those two differ-
ent modalities, this approach dependeds on maximizing
the agreement between real medical representation image-
text pairs and randomly chosen pairs. More specifically,
bidirectional contrastive objective losses were utilized
similarly to the InfoNCE loss. Minimizing this loss en-
courages encoders to reserve the MI between real repres-
entation image-text pairs. Punn and Agarwall!?9] utilized
the Barlow twins (BT) framework to pretrain an encoder
through redundancy reduction, similar to the InfoNCE
objective, to learn feature representation over four bio-
medical imaging segmentation tasks, including cell nuclei,
breast tumour, skin lesion, and brain tumour. Except for
InfoNCE-based contrastive loss based on the MoCo
framework, Kaku et al.[120l added two additional losses,
mean squared error (MSE) and BT. By minimizing the
MSE of feature representations between the intermediate
layer or using BT to make their cross-correlation matrix
closer to an identity matrix, the model was encouraged to
learn augmentation-invariant feature representations that
were not only focused on the final layer of the encoder
but also extracting the intermediate layers. Their results
showed that performance was better than MoCo on three
medical datasets, including breast cancer histopathology,
Clinical Center of the National Institute of Health (NIH)
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chest X-ray and diabetic retinopathy. Taher et al.[127]
found that instance-based objectives learned the most dis-
criminative global feature representations, which might
not be sufficient to discriminate medical images. Hence,
inspired by the integration of generative and discriminat-
ive approaches, preservational contrastive representation
learning (PCRL)[128], Taher et al.l?7l developed an SSL
framework, context-aware instance discrimination, to en-
courage instance discrimination learning with context-
aware feature representations.

3.2.2 Context-instance contrast learning for medical

image analysis

Maximizing MI for medical image analysis

Deep infomax (DIM)M“8 and augmented mul-
tiscale DIM (AMDIM).’% Chen et al.'?9] combined two
different types of self-supervised methods, one from the
context-instance category, DIM, and the other from the
instance-instance category, SimCLR[20, for learning dis-
ease concept embedding. They utilized the proposed mod-
el to extract medical information from electronic health
records and disease retrieval.

Contrastive predictive coding (CPC).%3 Stacke et
al.139 implemented and evaluated CPC on histopatho-
logy. After experimenting with some model and data-spe-
cific parameters on CPC models on histopathology im-
ages, those models were estimated for linear tumour clas-
sification on three tissue types. This work summarized
the restriction of the learned representation for linear tu-
mour classification on histopathology images because only
low-level features in the first CPC layers were used. The
diversity of distribution of the histology dataset makes
little difference for linear tumour classification on histo-
pathology images. Taleb et al.['3l] extended this idea to a
3D CPC version. Instead of the time sequence dataset
used in CPC, 3D CPC utilized a feature representation
set obtained from patches cropped from the upper or left
part of the 2D image sample to predict the encoded fea-
ture representations of the remaining part, lower or right
part. In addition, they also developed a 3D version for ro-
tation prediction, relative patch location, jigsaw puzzles,
and exemplar networks. They demonstrated that the fea-
ture representations learned from 3D models were more
accurate and efficient for solving downstream tasks than
training the models from scratch and pretraining them on
2D slices. Zhu et al.['32] investigated the feature comple-
mentarity within multiple SSL approaches and presented
a greedy algorithm to add multiple proxy tasks. More
specifically, based on the assumption that a weaker cor-
relation indicated a higher complementarity between two
features, they calculated the correlation measure between
the features created by different proxy tasks and then
utilized the greedy algorithm to iteratively include a
proxy task in the current task pool to form a multitask
SSL framework. They applied it to the 3D medical
volume brain haemorrhage dataset by adding multiple
proxy tasks, including 3D rotation, Models Genesisl!33],
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3D CPC, and Rubik’s cube. After locating the potential
lesions through supervoxel estimation utilizing simple lin-
ear iterative clustering, Zhu et al.l34 calibrated CPC to
learn a 3D visual representation. More specifically, calib-
rating the CPC scheme on the subvolumes cropped from
supervoxels embedded the rich contextual lesion informa-
tion into 3D neural networks. Cerebral haemorrhage clas-
sification and benign and malignant nodule classification
were implemented using the proposed method on the
brain haemorrhage and lung cancer datasets, respectively.
3.2.3 Instance-instance contrastive learning for
medical image analysis

SSL design on contrastive loss function-based
variation and specific structures for medical im-
age analysis

SSL design on contrastive loss function-based vari-
ation. Based on the principle of the contrastive learning
loss function, some papers worked on selecting positive
and negative samples. For example, Jian et al.[135] com-
bined a multilayer network and VGG-16 to discriminate
images with helicobacter pylori infection from images
without helicobacter pylori infection well. However, some
papers modified the principle of the contrastive learning
loss function for particular applications, such as the fol-
lowing five applications. 1) Learning multimodality for
medical applications — Holmberg et al.[36] proposed a new
large-scale and cross-modality SSL in the field of ophthal-
mology. This SSL pretext task encoded shared informa-
tion between two high-dimensional modalities, including
infrared fundus photography and optical coherence tomo-
graphy. The fundus representation learned from the SSL
pretext task contains disease-relevant features that were
efficient for downstream diabetic retinopathy classifica-
tion and retinal thickness measurement. However, the au-
dio and video data used for training SSL could be seen,
e.g., in [137]. In detail, by assuming that there was dense
correspondence between the ultrasound video and the rel-
evant narrative diagnosis/interpretation speech audio of
the sonographer, Jiao et al.l!37] proposed SSL with mul-
timodal input, including ultrasound video-speech raw
data. Interestingly, to learn domain-agnostic feature rep-
resentation, Tamkin et al.!38 designed the model archi-
tecture and objective to pretrain on six unlabelled data-
sets. Those datasets from various domains include text,
natural images, medical imaging, multichannel sensor
data, speech recordings and paired text and images. 2)
Learning local representation for medical applications —
Xie et al.[139] also focused on local regions by utilizing spa-
tial transformation to create dissimilar augmented views
of the same input. This encouraged consistent latent fea-
ture representations of the same region from different
views of the same input image and assured such consist-
ency by minimizing a local consistency loss. The pro-
posed algorithm was used for pretraining to initialize a
downstream network and improve four publicly available
CT datasets, including two tumours and 11 different

types of primary human organs. Chaitanya et al.[l40 141]
not only used global contrastive learning but also pro-
posed a local version of contrastive learning. In particu-
lar, the local version of contrastive learning loss encour-
aged feature representations of local areas in an image to
be similar with different transformations but dissimilar to
different local areas in the same image. The combination
of global and local contrastive learning benefited the
downstream MRI segmentation task. One similar work
proposed by Ouyang et al.[142 143] employed super pixel
pseudo labels and was devised for the tuning-free few-shot
segmentation task, including cardiac segmentation of the
MRI dataset, and organ segmentation of the abdominal
MRI and CT datasets. Furthermore, the same teaml[!44
designed a local pixelwise contrastive loss to learn dis-
criminative pixel-level feature representations. This en-
abled the model to learn better interclass separability and
intraclass compactness for the segmented classes on three
public medical datasets with two anatomies, including
cardiac and prostate. Yan et al.['45] proposed a pixel-level
contrastive learning framework with a coarse-to-fine ar-
chitecture to learn both local and global information and
designed customized negative sampling strategies. More
specifically, the global embedding was trained to discrim-
inate various body parts on a coarse scale, assisting the
local embedding to concentrate on a smaller region to dis-
tinguish finer features. The learned embeddings were ap-
plied in different downstream areas, such as landmark de-
tection and lesion matching, on various radiological im-
age modalities, including 3D CT and 2D X-ray of vary-
ing body parts, such as the chest, hand, and pelvis. 3)
Learning multiscale information for medical applica-
tions — in histopathology, Sahasrabudhe et al.['46] pro-
posed a self-supervised method for nuclei segmentation on
whole-slide histopathology images. They utilized scale
classification as a self-supervision signal under the hypo-
thesis that the texture and size of nuclei could be seen as
the level of magnification at which a patch was obtained.
Sun et al.147 introduced a multiscale SSL framework to
precisely segment tissues for a multisite paediatric brain
MRI dataset with motion/Gibbs artifacts. 4) Learning
texture representation for medical applications — Chen et
al.48] proposed a new computer-aided diagnosis ap-
proach with contrastive texture learning loss to learn cer-
vical optical coherence tomography image texture fea-
tures. 5) Learning structural representation for medical
applications — Tang et al.l!49 estimated the similarity
between original and augmented images through the de-
signed structural similarity loss for enhancing medical im-
age classification.

SSL design on specific structures. Recently, Siamese
networks and teacher-student networks have become pop-
ular structures applied in medical areas. Siamese net-
work learning for medical applications — Spitzer et al.[150]
utilized a Siamese network to calculate spatial distances
between image patches sampled randomly from the cor-
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tex in random sections of the same brain. Learning to dis-
criminate several cortical brain areas through their mod-
el implicitly indicated that the designed pretext task was
suitable for high-resolution cytoarchitectonic mapping.
Due to the benefits of decreasing the calculational ex-
pense of 3D medical imaging, Li et al.l!51 extended a 2D
Siamese network to a 3D Siamese network to avoid using
negative pairs or large batch sizes. Their proposed SSL
coped with an imbalance problem that assisted the
learned radiomics features for two downstream classifica-
tion tasks, including discrimination of the level of brain
tumours on the MRI dataset and the stage of lung can-
cer on the CT dataset. Ye et al.!52l applied a Siamese
network to stereo images to access depth in robotic sur-
gery. For kidney segmentation from abdominal CT
volumes, Dhere and Sivaswamyl!!53 used a Siamese CNN
to classify whether a given pair of kidneys belonged to
the same side. They designed a proxy task by utilizing
the anatomical asymmetry of kidneys, and the slight vari-
ation in shape, size, and spatial location between the left
and right kidneys varied slightly. Moreover, some pa-
tients were scanned many times in a so-called longitudin-
al manner to track therapy or to estimate changes in the
disease state. Hence, some studies on longitudinal inform-
ation of the scans were used for training a Siamese net-
work to compare the embeddings of scans from the same
person or different persons. To pretrain on the example of
T2-weighted sagittal lumbar MRIs, Jamaludin et al.[!54
utilized SSL with a Siamese CNN trained through the
two losses described as follows: 1) a contrastive loss on
the pairs of images scanned from the same patient (i.e.,
longitudinal information) at different points in time and
on the pairs of images of different patients, and 2) a clas-
sification loss was used to predict vertebral body level
and disc degeneration radiological grading. Rivail et
al.[1%] presented a self-supervised method based on a Sia-
mese network for modelling disease progression from lon-
gitudinal data, such as longitudinal retinal optical coher-
ence tomography. Taking advantage of a generic time-
specific task, this self-supervised model learned to evalu-
ate the time interval between pairs of scans obtained
from the same patient. Teacher-student learning for med-
ical applications — Li et al.l!56] designed a new SSL ap-
proach based on the teacher-student architecture to learn
distinguishing representations from gastric X-ray images
for a downstream task, gastritis detection. One of the stu-
dent-teacher frameworks, Mean Teacher in [157], was in-
tegrated by Liu et al.l!38 in the pretraining process for
semisupervised fine-tuning for thorax disease multilabel
classification. Park et al.l%% used information distillation
between teacher and student frameworks and the vision
transformer model for chest X-ray diagnosis, including
tuberculosis, pneumothorax, and COVID-19. You et
al.[160, 161] also demonstrated that the distillation frame-
work improved medical image synthesis, registration and
enhancement on the left atrial (LA) segmentation chal-
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lenge and the NIH pancreas CT dataset. Later, they also
proposed another semi-supervised approach that used
stronger data augmentation and understood the nearest
neighbours whose anatomical characteristics were homo-
geneous from the same class but distinct for other classes
in unlabelled and clinically unbalanced circumstances/162],

Instance-based discrimination for medical im-
age analysis

Memory bank momentum MoCo.'% The modelll63]
that incorporated PIRL and transfer learning could learn
the invariance property for skin lesion analysis, and the
results outperformed those obtained using only transfer
learning or only SSL. Taking advantage of MoCo while
reducing dependency on batch size, Sowrirajan et al.[164]
utilized it as a fundamental framework for reducing two
constraints caused during training on the X-ray image.
These two constraints were large X-ray image sizes and
high computational requirements. The proposed MoCo-
chest X-ray (CXR) model that adjusted the data aug-
mentation strategy used in MoCo obtained high-quality
feature representations and transferable initializations for
the following detection of pathologies on chest X-ray im-
ages and across different chest X-ray datasets.

Several works used MoCo for COVID-19 diagnosis.
Sriram et al.[1%5] applied MoCo to the COVID-19 adverse
event prediction task from both single and multiple im-
ages and oxygen requirement prediction. To learn mean-
ingful and unbiased visual representations for decreeing
the risk of overfitting, He et al.['%] integrated contrastive
SSL training on a similar dataset into transfer learning.
Zhul'67] utilized the combination of rotation and division
as the supervisory signal on the SSL framework for COV-
ID-19 classification in the small shot scenario. Based on
the MoCo v2 algorithm, hierarchical pretraining, applied
by Reed et al.l!68] consistently converged to learn repres-
entations for experimenting on 15 of the 16 diverse data-
sets, spanning visual domains, including medical, driving,
aerial, and simulated images. For medical datasets, they
checked whether any of the five conditions were in each
image of the CheXpert dataset!69 and classified 4-way
pneumonia on the chest-X-ray-kids dataset[170]. Hierarch-
ical retraining was a way to train models on datasets that
were gradually more similar to the target dataset. Liang
et al.ll7 also employed MoCo v2 as the base for conduct-
ing a neural architecture search to search for an optimal
local architecture from its data. They applied it to CheX-
pert-14[169 and ModelNet40[7 for five -classification
tasks, including pleural effusion, atelectasis, consolidation,
edema, and cardiomegaly. Interestingly, to train the en-
coder that could extract feature representation from the
panoramic radiograph of the jaw, Hu et al.l7l utilized
MoCo v2 to train the feature extractor on massive
healthy samples. The joint with localization consistency
loss and patch-covering data augmentation strategy could
improve the model’s reliability. Wu et al.l74 17] integ-
rated contrastive learning with federated learningll76-17¢]



W. C. Wang et al. / A Review of Predictive and Contrastive Self-supervised Learning for Medical Images 497

to collaboratively learn a shared image-level representa-
tion. Federated learning trained an algorithm within dif-
ferent decentralized edge devices to learn a shared model
and each device kept local data samples without exchan-
ging them. They experimented on 3D cardiac MRI im-
ages using MoCo architecture for local contrastive learn-
ing. Dong and Voiculescull™ also federated SSL based on
MoCo for COVID-19 detection. He et al.['80] combined a
new surrogate loss proposed by Yuan et al.l'8l with
MoCo-based SSL for computer-aided screening of COV-
ID-19 infected patients utilizing radiography images. This
novel surrogate loss maximized the area under the receiv-
er operating characteristic curve (AUC), and this combin-
ation facilitated vital metrics while also maintaining mod-
el trust. Saillard et al.[!82] implemented MoCo v2 on his-
tology images from the cancer genome Atlas dataset for
microsatellite instability prediction in gastric and
colorectal cancers. Tomar et al.[183] applied a Style en-
coder to the SSL framework utilizing volumetric contrast-
ive loss through momentum contrastl!®l. The Style en-
coder was designed to encourage content-invariant image-
level feature representation that gathered similar styled
images and dispersed dissimilar styled images.

SimCLR.[20 Azizi et al.l'84 proposed a new method,
multi-instance contrastive learning (MICLe), to classify
two kinds of medical images, dermatology on camera im-
ages and multilabel on chest X-ray images. Unlike the
traditional pretrained model, this work pretrained the
model on unlabelled ImageNet using SimCLR. Then, this
work used MICLe to perform self-supervised pretraining
on unlabelled medical images to create moderate positive
pairs. Finally, supervised fine-tuning was performed on
labelled medical images. Gazda et al.l!8%] proposed a self-
supervised deep neural network that combined SimCLR
and MoCo to first pretrain on an unlabelled CheXpert
dataset of chest X-ray images and then transferred the
pretrained representations to downstream tasks, includ-
ing COVID-19 and pneumonia detection tasks, that is,
the classification of respiratory diseases. In the histopath-
ology domain, based on SimCLR, Ciga et al.ll86] dis-
covered that the combination of multiple multiorgan
datasets with several types of staining and resolution
properties enhanced the quality of the learned features. Li
et al.l'87 addressed whole-slide image classification by
training the feature extractor SimCLR. Interestingly, for
SimCLR training, they used patches as inputs extracted
from the whole slide image and were densely cropped
without overlap, which could be seen as an individual in-
put. Cigall88] also implemented SimCLR for breast can-
cer detection in histopathology. Mojab et al.['89 verified
the proposed model, a SimCLR-based framework with
transfer learning, on real-world ophthalmic imaging data-
sets for glaucoma detection. Schirris et al.190 utilized a
SimCLR-based feature extractor pretrained on histopath-
ology tiles and extended the deep multiple instance learn-
ing (DeepMIL) classification framework for homolog-

ous recombination deficiency (HRD) and microsatellite
instability (MSI) classification on colorectal and cancer
datasets. Zhao and Zhoul'%2l added the fast mixed hard
negative sample strategy to rapidly synthesize more hard
negative samples!!93 through a convex combination for
training. The proposed model was pretrained in a self-su-
pervised way on the Chest X-ray of pneumonia dataset
and fine-tuned in a supervised way on the COVID-CT
dataset. Wicaksono et al.l194 combined two types of con-
trasting learning, rotation, and jigsaw puzzle from the
context contrastive instance category and SimCLR vl
from instance contrastive learning, for the human em-
bryo image classification task. Based on SimCLR, Manna
et al.[19] also proposed an asymptotic study of the lower
bound of the designed novel loss function to test the MR-
Net dataset, which was composed of magnetic resonance
videos of the human knee. You et al.19] presented two
learning strategies for the volumetric medical image seg-
mentation task. One used a voxel-to-volume contrastive
algorithm to obtain global information from 3D images,
and the other used local voxel-to-voxel distillation to bet-
ter utilize local signals in the embedding space. Yao et
al.9 were motivated by contrastive learningl20, 198]
which localized the object landmark with only one la-
belled image available in a coarse-to-fine fashion to cre-
ate pseudo-annotation for training a terminal landmark
detector. The proposed model demonstrated high-per-
formance cephalometric landmark detection, comparable
to popular fully supervised approaches utilizing more
than one training image. Ali et al.[1%] used 3D SimCLR
during pretraining and Monte Carlo dropout during pre-
diction on two tasks, including 3D CT pancreas tumour
and 3D MRI brain tumour segmentation. Inglese et al.[200]
followed a similar optimization method of SimCLR to
train an SSL network for distinguishing between two dia-
gnostically different systemic lupus erythematosus pa-
tient groups. To learn task-agnostic properties, such as
texture and intensity distribution, from heterogeneous
data, Zheng et al.[201] first aggregated a dataset from vari-
ous medical challenges. Then, they presented hierarchical
SSL based on SimCLR with contrasting and classifica-
tion strategies to provide supervision signals for image-
level, task-level, and group-level pretext tasks. On the
downstream tasks, they segmented the heart, prostate,
and knee on the MRI dataset and the liver, pancreas, and
spleen on the CT dataset.

Cluster-based discrimination for medical ap-
plication

Abbas et al.202] proposed a new SSL mechanism, 4S-
DT, that assisted coarse-to-fine transfer learning accord-
ing to a self-supervised sample decomposition of unan-
notated chest X-ray input. Super sample decompo-
sition203] was a pretext task that trained networks using
cluster assignments as pseudo labels. The coarse transfer
learning utilized an ImageNet pretrained CNN model for
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classifying pseudo labelled chest X-ray images, creating
chest X-ray related convolutional features. Fine transfer
learning was used in downstream training tasks from
chest X-ray recognition tasks to COVID-19 detection
tasks. In histopathology, Abbet et al.204 conducted re-
search on learning cancerous tissue areas that could be
utilized to enhance prognostic stratification for colorectal
cancer. They presented an SSL method that combined
the learning of tissue region representations and a cluster-
ing metric to extract their underlying patterns. Ma-
hapatra et al.209] utilized one of the deep clustering meth-
0ds[206], named SwAV, without using class attribute vec-
tors commonly used for natural images. They proved the
effectiveness of the proposed model across different data-
sets with at least three disease classes. Chaves et al.[207]
evaluated five SSL methods, including InfoMin, MoCo,
SimCLR, BYOL, and SwAV, for diagnosing skin lesions.
They compared those SSL methods and three self-super-
vised pipelines on five test datasets with in-distribution
and out-distribution scenarios. They summarized that
self-supervision is competitive both in increasing accur-
acy and decreasing outcome variability. Chen et al.[208]
developed an SSL strategy to perform joint deep embed-
ding and cluster assignment for dMRI tractography white
matter fiber clustering. Ciga et al.[209 utilized a two-step
pretraining on three popular contrastive techniques, Sim-
CLR, BYOL and SwAV, to validate better performance
on two natural and three medical images, including
ChestX-ray8, breast ultrasound, and brain tumour MRI.
Islam et al.210 pretrained and compared models within
fourteen different SSL approaches for pulmonary embol-
ism classification on CT pulmonary angiography scans.
3.2.4 Temporal contrastive SSL for medical image
analysis

Temporal contrastive SSL learned feature representa-
tion by grabbing the spatial or structural information
between adjacent frames. Sequential images were utilized
in two kinds of ways as self-supervision for the training
model, such as the objects shown in the adjacent frames
or the process of correcting frame order.

Finding similarities of adjacent frames for med-
ical image analysis

One of the most common applications of temporal
contrastive SSL was to find the similarity in adjacent
frames. This enabled the mode to learn contextual se-
mantic representations. In histopathology, Gildenblat and
Klaiman(2!] utilized the image characteristic that spa-
tially adjacent histopathological tissue image slices were
more similar to one another than distance slices, which
was used to train on a Siamese network for learning im-
age similarity. In another application, due to the cardiac
MR scans composed of different angulated planes relat-
ive to the heart, Bai et al.[2!2] learned feature representa-
tion, through the proposed model, from information auto-
matically defined by the heart chamber view planes. That
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information included anatomical positions, and the relat-
ive orientation of long-axis and short-axis views could be
used to create a pretext task for SSL training. Kragh et
al.213] implemented a self-supervised video alignment
method, temporal cycle consistency2!4], to obtain tempor-
al similarities between embryo videos, and this informa-
tion to predict pregnancy possibility. By utilizing the pos-
ition information in volumetric medical slices, Zeng et
al.[181] provided a new position contrastive learning frame-
work to produce contrastive data pairs. The framework
can successfully eliminate false negative pairings in the
currently common contrastive learning techniques for
medical segmentation.

Tracking objects for medical image analysis

Lu et al.[215 216] designed a pretext task to predict the
density map of fiber streamlines that were the representa-
tions of generic white matter pathways for white matter
tracts. They took advantage of two characteristics of the
fiber streamlines. These fiber streamlines could be calcu-
lated with fiber tracking obtained automatically with
tractography, and the density map of fiber streamlines
was acquired as the number of streamlines accross each
voxel. In short, fiber streamlines were jointed line seg-
ments with directions and could be seen as white matter
pathways that provide supervision. To segment white
matter tracts on diffusion magnetic resonance imaging
scans, learned features of white matter tracts through the
designed pretext task could predict the density map of
fiber streamlines from the training data obtained through
tractography.

Correcting frame orders from 3D medical im-
ages

The process of correcting frame orders from shuffled
frames assisted the model in learning feature representa-
tion. Zhang et al.217 utilized spatial context information
in 3D CT and MR volumes as a source of supervision cre-
ated by solving the tasks of transversal 2D slice ordering
for fine-grained body part recognition. Nguyen et al.[218]
also demonstrated that predicting the 2D slice order in a
sequence could obtain both spatial and semantic features
for downstream tasks, the detection of organ segmenta-
tion, and intracranial hemorrhage. Jiao et al.l2!9 correc-
ted the order of a reshuffled fetal ultrasound video. By
utilizing the characteristics of the tube-like structure of
axons, Klinghoffer et al.220 learned feature representa-
tion by training the model to predict the permutation
that was utilized to reformulate the slices of each input
3D microscopy subvolume for axon segmentation. The
design of the pretext task, resolution sequence predic-
tion[22l], was inspired by the approach in which a patholo-
gist looked for cancerous regions in whole-slide images.
More specifically, a pathologist zoomed in and out sever-
al times to inspect the tissue at high to low resolution to
acquire the details of individual cells and the surround-
ing area. Srinidhi et al.22!l utilized multiresolution con-
textual information as a supervisory signal to train a de-
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signed SSL network. This network learned visual repres-
entations by predicting the order of sequences of resolu-
tion that could be generated from the multiresolution his-
tology whole slide image patches.

4 Conclusions and future directions

This study reviews the state-of-the-art contrastive
SSL algorithms on natural images, along with their novel
adaptations for medical imaging data. We cover funda-
mental problems when implementing SSL in medical
areas and its future directions.

1) The pretext tasks of SSL can create implicit super-
visory signals from unlabelled datasets to perform unsu-
pervised learning close to, or even equal to, that of hu-
man labelling. Most of the pretext tasks we survey are all
manually created by experts, and require both domain
and machine learning skills, together with a comprehens-
ive set of experiments. We believe there is an opportun-
ity to frame the pretext task creation as an optimization
problem, which is conceptually comparable to the pur-
suit of the best architecture for a deep learning challenge.
Furthermore, learning a reliable representation from med-
ical images will not be optimal by simply adopting pre-
text tasks that have been developed on natural images.
Hence, such methods require to be further modified and
improved to suit the nature of medical images and en-
able the extraction of robust representations.

2) Similar to pretext tasks, augmentation techniques
used in contrastive SSL methods that are designed and
optimized for natural images may not be suitable for

medical images. As an example, medical images that are
already grayscale would not be transformed in a meaning-
ful way by color jittering or random grayscale, which are
common techniques applied to natural images. The ef-
fects of various additional augmentations and their com-
binations should be studied in further research.

3) Sampling strategies are one of the reasons for the
success of mutual information-based systems, as noted by
Tschannen et al.44 Sampling strategies may affect con-
trastive SSL methods, such as MoCo and SimCLR, which
need huge amounts of negative samples. Hence, how to
decrease the reliance on sampling strategies is still an ap-
pealing and unsolved problem. A suitable negative sample
can be built based on the properties of medical images,
and from there, more valuable data features can be ex-
tracted222 2231, There needs to be a furthur investigation
on how to create negative samples and how to better ad-
apt SSL to downstream tasks to enhance the perform-
ance of SSL approaches in the medical imaging domain.
Moreover, along with data augmentation, the redesign of
the contrastive loss function plays a crucial role in the
performance. Some researchers have worked on designing
contrastive loss functions for their particular purposes in
medical areas and related to e.g., multimodal learn-
ingl136, 137, 224] ' Jocal representation learning(!39, multiscale
learning, and texturel!48 or structurall4? representation
learning.

Appendix

In Tables A1-A3, the contents of column dataset used

Table A1 Self-supervision: Predict learning

Pretext task Author(s)

Dataset(s) used
(in pretraining, testing, and downstream tasks)

Application(s)

2D fetal ultrasound image

Chen et al.[83], 2019 D abdominal CT image

Brain TMR image (BraTS challenge)

Blendowski et al.[87], 2019 VISCERAL Anatomy CT dataset

Relative
position

88]
Jana et al.l%8], 2021 CT images

Li et al.89 2021 Chest CT images

MICCAI 20 7 LiTS challenge dataset

Fetal standard scan plane classification
Abdominal multiorgan localization
Brain tumor segmentation

Multiorgan segmentation
(liver, spleen, left kidney, right kidney, left psoas
major muscle, and right psoas major muscle)

Fibrosis classification

NAS score classification

(nonalcoholic fatty liver disease (NAFLD),
activity scores (NAS))

COVID-19 severity level prediction

BraTsS dataset

Taleb et al.[%1], 2020 Prostate dataset

CHAOS multimodal dataset

Taleb et al.l2], 2021 BraTsS challenge

Jigsaw puzzle
X-ray images (RSNA)

Navarro et al.[93], 2021  VISCERAL CT dataset

Grand challenges CT dataset

Manna et al.[94], 2021 MRNet dataset

Survival days prediction, and multimodal brain
tumor segmentation

Prostate segmentation

Liver segmentation

Brain tumor segmentation

Survival prediction regression

Pneumonia classification
Multiorgan segmentation

Three knee conditions classification
(abnormality, ACL tear, and meniscus tear)
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Table A1 (continued) Self-supervision: Predict learning

Pretext task Author(s)

Dataset(s) used
(in pretraining, testing, and downstream tasks)

Application(s)

Li et al.[%], 2020

Chae et al.[102] 2021

Santilli et al.[103] 2021

MoNuSeg dataset
ISIC dataset

Cervix image dataset

REIMS data

[Histopathological images]
Nuclei segmentation
Skin lesion segmentation

Cervical cancer classification

Breast cancer classification

Zhuang et al.[104] 2019

Zhu et al.[105] 2020

Brain hemorrhage CT dataset (private dataset)
BraT$S-208

Cerebral hemorrhage dataset

Brain hemorrhage classification
Brain tumor segmentation

Cerebral hemorrhage classification

BraTS-20 8 Brain tumor segmentation
Rubik’s cube Tao et al.l16]. 2020 NIH Pancreas CT dataset Pancreas segmentation
7 MRBrainS 8 dataset Brain tissue segmentation
Distinguishing COVID- 9 from other two cases:
Li et al.[197 2020 COVID- 9 CT dataset Nonpneumonia and community acquired
pneumonia (CAP) on chest CT exams
False-positive reduction (FPR) for nodule
LIDC-IDRI chest CTs detection
Tajbakhsh et al.[116], 2019 Diabetic retinopathy (DR) fundus image dataset Lung lobe segmentation
Private dataset (color, telemedicine) DR classification in fundus images
Skin segmentation
iChallenge-AMD dataset
Li et al.[108]) 2021 iChallenge-PM dataset Retinal disease classification
EyePACS dataset/Kaggle DR
Yang et al.[109], 2020 LiTS 2017 MICCAI Cross-modality liver segmentation
Rotation

Liu et al.[113], 2019

Dong et al.['14] 2021

Koohbanani et al.[119], 2020

NLST dataset

LUNA 6 dataset
SPIE-AAPM dataset
Lung TIME dataset

HMS Lung cancer dataset

CT images dataset

Camelyon 6
LNM-OSCC
Kather

Pulmonary nodule classification

Focal liver lesions classification

[histopathology image]
Histology image classification

Table A2  Self-supervision: Context-instance contrast/Maximizing mutual information

Pretext task Author(s)

Dataset(s) used
(in pretraining, testing, and downstream tasks)

Application(s)

Stacke et al.[130] 2020

Contrastive
predictive
coding (CPC)

Taleb et al.[131], 2020

Zhu et al.[132], 2021

Zhu et al.[134] 2020

STL-10
CAMELYON17
AIDA-LNCO
AIDA-SKIN

Multimodal brain tumor segmentation (BraTS)
2018

Pancreas dataset

Diabetic Retinopathy 2019 Kaggle challenge
UK Biobank (UKB)

3D brain hemorrhage dataset (private dataset)

Brain hemorrhage dataset (private dataset)
LUNA16 dataset

[Histopathological images]
Tumor classification

Brain tumor segmentation
Pancreas tumor segmentation
Diabetic retinopathy detection

Brain hemorrhage classification

Brain hemorrhage classification
Lung nodule classification

and column applications are from the reference men-

tioned in column authors.
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Table A3  Self-supervision: Instance-instance contrast/Predicting spatial relative position

Pretext task

Author(s)

Dataset(s) used

(in pretraining, testing, and downstream tasks)

Application(s)

PIRL Kwasigroch et al.[163], 2020 ISIC2017 challenge dataset Skin lesion classification
.. . CheXpert dataset . .
[164] _
Sowrirajan et al. , 2021 Shenzhen hospital X-ray dataset Chest X-ray interpretation
Adverse event prediction from single images
SIP
) MIMIC-CXR. dataset (Advgrse event prediction from multiple images
Sriram et al.[165] 2021  CheXpert (MIP)
NYU COVID dataset . . s .
Oxygen requirements prediction from single
images (ORP)
MoCo
They built the COVID19-CT dataset through
He et al.[166], 2020 collecting medical images from COVID-19 Diagnosing COVID-19 from CT scans
relative bioRxiv and medRxiv papers
Chexpert Five classification on Chexpert dataset
Reed et al.[168] 2022 p . Singular classification on Chest-X-ray-kids
chest-X-ray-kids
dataset
Liang et al.[171], 2018 FedCheXpert Multiclass classification
CheXpert dataset
Cell dataset . e s
MoCo + . Pneumonia classification
X Gazda et al.[!85] 2021 ChestX-rayl4 e
SimCLR C19-Cohen dataset COVID-19 classification
COVIDGR dataset
Dermatology skin condition
Azizi et al.l'84] 2021 gﬁzr)réa‘;c;ltogztj:;asct classification
p Five pathologies chest X-ray classification
BACH challenge dataset [histopathology 1m'f15';es] .
Breast cancer classification
Patch Camelyon PR
BreakHis Lymph node classification
NCT-CRC-HE-100K /Kather gr?ajt t;‘rflorndarss‘flcaitflio“ vion
Ciga et al.1*], 2022 PANDA P;)oZtZ‘tcciaC;cccre rcaglsrsl e
BACH challenge dataset & s
Breast cancer segmentation
Gleason2019 Prostate cancer gradin,
DigestPath2019 & g
. BreastPathQ dataset Colon tumor segmentation.
SimCLR Percentage of cancer cellularity of each patch
Camelyon16 [histopathology images]
Li et al.187, 2021 The cancer genome atlas (TCGA) lung cancer Breast cancer classification and localization
dataset lung cancer classification
Inglese et al.[200], 2022  Private dataset for diagnosing NPSLE NPSLE/non-NPSLE classification
LASC
k/[lrs[‘]g Eight medical image segmentation:
Zheng et al.[201] 2021 cardiovascular structures, liver & tumours,
Knee spleen, knee bones & cartilages, and prostate
ACDC P ) £ges, p
M&Ms
Collected from three different dataset
Abbas et al.[202] 2021 COVID-19 dataset-A Detection of COVID-19 cases
COVID-19 dataset-B
Cluster Abbet et al.[204], 2020 Kather dataset [WSIs hlstopathologlca.l.1ma.ges]
T . Colorectal cancer classification
discrimination

Chaves et al.[207], 2022

Isicl9

Isic20

Derm7pt—-derm and derm7pt—clinic
Pad-ufes-20

Skin lesions classification

SSL design on
contrastive loss
function-based

variation

Holmberg et al.[136], 2020

Xie et al.[139], 2020

Kaggle diabetic retinopathy dataset
Tissue segmentation infrared (IR) fundus
image dataset

Collected from public datasets (RibFrac
dataset and medical segmentation decathlon
(MSD) challenge)

Liver dataset

Spleen dataset

KiTS dataset

BCV dataset

Diabetic retinopathy classification
OCT retinal thickness measurements

Human organs and two tumor, such as liver and
kidney segmentation
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Table A3 (continued) Self-supervision: Instance-instance contrast/Predicting spatial relative position

Dataset(s) used

Pretext task Author(s) (in pretraining, testing, and downstream tasks) Application(s)
ACDC dataset Cardiac multistructures segmentation
Chaitanya et al.[140.141] /2020 Prostate dataset Prostate structures segmentation
MMWHS dataset Heart multistructures segmentation

DeepLesion CT datasets

Yan et al.[145], 2022 NIH-LN

ChestCT dataset

Sahasrabudhe et al.[146], MoNuSeg
2020 TNBC
CoNSeP

Xie et al.[122], 2020

MoNuSeg 2018 Dataset

3D universal lesion matching on CT

2D landmark detection on hand and pelvic X-
rays

3D 19 landmark detection on chest CT

[Histopathological images]
Nuclei segmentation

[Histopathological images]
Nuclei segmentation

Spitze et al.[150], 2018

BraTs

; [151]
Liet al. "2, 2021 NSCLC-radiomics

Dhere and Sivaswamy/(153],

SSL design on
2021

specific structures

KiTS 2019 challenge

Jamaludin et al.[!54], 2017 In-house dataset (TwinsUK registry)

Rivail et al.['5%], 2019 Longitudinal dataset
Li et al.[156], 2021

Liu et al.[158], 2021 Chest X-ray14

Generated a dataset based on BigBrain

Gastric X-ray image dataset

[Histological images]
Cytoarchitectonic segmentation of human brain
areas

Brain tumor classification
Lung cancer staging

Kidney segmentation

Radiological grading classification
Conversion to advanced AMD classification
Gastritis detection

Thorax disease multilabel classification

Gildenblat and Klaiman[2!1],

2020 Camelyonl6

Bai et al.[212], 2019 UK Biobank

Lu et al.[215:216] 2021

StructSeg dataset
Islam et al.[210,218] 2021

Temporal contrast dataset

Jiao et al.[219], 2020

Klinghoffer et al.[220], 2020

BreastPathQ dataset

Srinidhi et al.221], 2022  Camelyon16 dataset

Kather multiclass dataset

HCP dMRI scan dataset

Clinical fetal US dataset

SHIELD PVGPe dataset
Single neuron Janelia dataset

RSNA Intracranial hemorrhage is a CT scan

[Histopathological images]
Image retrieval for tumor areas

Cardiac MR image segmentation

‘White matter tract segmentation

Organ segmentation
Intracranial hemorrhage detection

Standard plane detection and saliency
prediction

Axon segmentation

Tumor metastasis detection
Tissue type classification
Tumor cellularity quantification
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