Skip to main content
Log in

Assessment of rhizospheric microorganisms of transgenic Populus tomentosa with cowpea trypsin inhibitor (CpTI) gene

  • Published:
Forestry Studies in China

Abstract

To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P. bolleana) × P. tomentosa with the cowpea trypsin inhibitor (CpTI) gene, two layers of rhizospheric soil (from 0 to 20 cm deep and from 20 to 40 cm deep, respectively) were collected for microorganism culture, counting assay and PCR analysis to assess the potential impact of transgenic poplars on non-target microorganism population and transgene dispersal. When the same soil layer of suspension stock solution was diluted at both 1:1 000 and 1:10 000 rates, there were no significant differences in bacterium colony numbers between the inoculation plates of both transgenic and non-transgenic poplars. The uniform results were revealed for both soil layer suspension solutions of identical poplars at both dilution rates except for non-transgenic poplars at 1:10000 dilution rates from the same type of soil. No significant variation in morphology of both Gram-positive and Gram-negative bacteria was observed under the microscope. The potential transgene dispersal from root exudates or fallen leaves to non-target microbes was repudiated by PCR analysis, in which no CpTI gene specific DNA band was amplified for 15 sites of transgenic rhizospheric soil samples. It can be concluded that transgenic poplar with the CpTI gene has no severe impact on rhizospheric microorganisms and is tentatively safe to surrounding soil micro-ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgarte S, Tebbe C C. 2005. Field studies on the environmental fate of the CrylAb Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol. 14(8): 2 539–2 550

    Article  CAS  Google Scholar 

  • Baute T S, Sears M K, Schaafsma A W. 2002. Use of transgenic Bacillus thuringiensis Berliner corn hybrids to determine the direct economic impact of the European corn borer (Lepidoptera: Crambidae) on field corn in eastern Canada. J Econ Entomol. 95(1): 57–64

    Article  PubMed  Google Scholar 

  • Bourguet D, Chaufaux J, Micoud A, Delos M, Naibo B. 2002. Ostrinia nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays). Environ Biosafety Res. 1(1): 49–60

    PubMed  Google Scholar 

  • Bruinsma M, Kowalchuk G A, van Veen J A. 2003. Effects of genetically modified plants on microbial communities and processes in soil. Biol Fert Soils. 37(6): 329–337

    Google Scholar 

  • Chen W X. 1990. Soil and Environment Biology (in Chinese). Beijing: Beijing Agricultural Press

    Google Scholar 

  • Cotter J, Mayer S, Watch G. 2004. GE Rice in China: Health and Environmental Risks. Greenpeace. 1–24

  • Cowgill S E, Bardgett R D, Daan K T, Kiezebrink D T, Atkinson H J. 2002. The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol. 39(6): 915–924

    Article  Google Scholar 

  • de Vries W, Herzfeld T, Wackernagel W. 2004. Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol. 53(1): 323–331

    Article  PubMed  CAS  Google Scholar 

  • Donegan K K, Palm C J, Fieland V J, Porteous L A, Ganio L M, Schaller D L, Bucao L Q, Seidler R J. 1995. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Eco. 2(2): 111–124

    Article  Google Scholar 

  • Donegan K K, Schaller D L, Stone J K, Ganio L M, Reed G, Hamm P B, Seidler R J. 1996. Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis tenebrionis endotoxin. Transgenic Research. 5: 25–35

    Article  CAS  Google Scholar 

  • Donegan K K, Seidler R J, Doyle J D, Porteous L A, Digiovanni G, Widmer F, Watrud L S. 1999. A field study with genetically engineered alfalfa inoculcted with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Eco. 36(6): 920–931

    Article  Google Scholar 

  • Glandorf D C M, Bakker P A H M, Van Loon L C. 1997. Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Acta Botanica Neerlandica. 46(1): 85–104

    CAS  Google Scholar 

  • Griffiths B S, Geoghegan I E, Robertson W M. 2000. Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. J Appl Ecol. 37(1): 159–170

    Article  Google Scholar 

  • Gustafson D I, Horak M J, Rempel C B, Metz S G, Gigax D R, Hucl P. 2005. An empirical model for pollen-mediated gene flow in wheat. Crop Sci. 45: 1 286–1 294

    Article  Google Scholar 

  • Hails R S. 2000. Genetically modified plants—the debate continues. Trees. 15: 14–18

    Article  Google Scholar 

  • Hao G X, Zhu Z, Zhu Z T. 1999. Transformation of Populus tomentosa with insecticidal cowpea proteinase inhibitor gene. Acta Botanica Sinica. 41(12): 1 276–1 282

    CAS  Google Scholar 

  • Hamill J D, Rounsley S, Spencer A. 1991. The use of the polymerase chain reaction in plant transformation studies. Plant Cell Reports. 217(1): 221–224

    Google Scholar 

  • Hilbeck A, Baumgartner M, Fried P M, Bigler F. 1998. Effects of transgenic Bacillus thuringiensis corn fed prey on the mortality and development time of immature Chrysoperia carnea (Neuroptera, Chrysopidae). Environ Entomol. 17: 480–487

    Google Scholar 

  • Hodgson J. 1999. Monarch Bt-corn paper questioned. Nature Biotechnol. 17: 627

    Article  CAS  Google Scholar 

  • Hoffmann T, Golz C, Schieder O. 1994. Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants. Curr Genet. 27(1): 70–76

    Article  PubMed  CAS  Google Scholar 

  • James R R. 1997. Utilizing a social ethic toward the environment in assessing genetically engineered insect-resistance in trees. Agriculture Human Values. 14: 237–249

    Article  Google Scholar 

  • Kling R A. 1996. Could transgenic super crops one day breed superweeds? Science. 274: 180–181

    Article  CAS  Google Scholar 

  • Kohli A, Twyman R M, Abranches R, Weget E, Stoger E, Christou P. 2003. Transgene integration, organisation and interaction in plants. Plant Mol Biol. 52: 247–258

    Article  PubMed  CAS  Google Scholar 

  • Lin Y Z, Zhang Q, Lin S Z, Lin Y Z. 2002. Identification of expression of CpTI gene in transgenic poplars at protein level. Forestry Studies in China. 4(2): 33–37

    Google Scholar 

  • Liu S L, Jie X L, Li Y T, An Z Z, Hu Z B. 2003a. Effects of sources of P on crop rhizosphere. Soils. 35(4): 25–29

    Google Scholar 

  • Liu Z L, Zhai H, Liu D Q. 2003b. Microbial interaction in the rhizosphere and its involvement in biological control of plant diseases. J Agriculture University Hebei. 26(Supp.): 183–187

    Google Scholar 

  • Losey, J E, Rayor L S, Carter M E. 1999. Transgenic pollen harms monarch larvae. Nature. 399: 214–218

    Article  PubMed  CAS  Google Scholar 

  • Luo R Y. 1990. Agrology (in Chinese). Beijing: China Forestry Publishing House

    Google Scholar 

  • Mallet J, Porter P. 1992. Preventing insect adaptation to insect resistant crops: Are seed mixtures or refugee the best strategy? Proc R Soc London Ser B. 250: 165–169

    Article  Google Scholar 

  • Matus-Cádiz M A, Hucl P, Horak M J, Blomguist L K. 2004. Gene flow in wheat at the field scale. Crop Sci. 44: 718–727

    Article  Google Scholar 

  • Oger P, Petit A, Dessaux. 1997. Genetically engineered plants producing opines alter their biological environment. Nature Biotech. 15: 369–372

    Article  CAS  Google Scholar 

  • Peferoen M. 1997. Progress and prospects for field use of Bt genes in crops. Trends Biotech. 15: 173–177

    Article  CAS  Google Scholar 

  • Pilcher C D, Obrycki J J, Rice M E, Lewis L C. 1997. Preimaginal development, survival and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environ Entomol. 26: 446–454

    Google Scholar 

  • Qian Y Q, Ma K P. 1995. On biotechnology and biosafety. J Natural Resources. 10(4): 323–331

    Google Scholar 

  • Rogers S O, Bendich A J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol. 5: 1 041–1 045

    Article  Google Scholar 

  • Saxena D, Florest S, Stotzky G. 1999. Insecticidal toxin in root exudates from Bt corn. Nature. 399: 402–480

    Article  Google Scholar 

  • Saxena D, Stotzky G. 2000. Insecticidal toxin from Bacillus thuringiensis released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbio Ecology. 33: 35–39

    Article  CAS  Google Scholar 

  • Stanley-Horn D E, Dively G P, Hellmich R L. 2001. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc NatI Acad Sci USA. 98: 11 931–11 936

    Article  CAS  Google Scholar 

  • Tabashnik B E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol. 39: 47–79

    Article  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Castiglione M R, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti M P, Giovannetti M. 2004. The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytologist. 163(2): 393–405

    Article  CAS  Google Scholar 

  • Wang Z H, Ye Q F, Shu Q Y, Cui H R, Xia Y W, Zhou M Y. 2002. The transfer of foreign genes and its expression products in genetically modified crops (in Chinese with English abstract). Acta Ecologica Sinica. 22(9): 1 521–1 526

    Google Scholar 

  • Widmer F, Seidler R J, Donegan K K, Reed G L. 1997. Quantification of transgenic plant marker gene persistence in the field. Mol Ecol. 6(1): 1–11

    Article  CAS  Google Scholar 

  • Wraight C L, ZangerI A R, Carroll M, Berenbaum M R. 2000. Absence of toxicity of Bacillus thuringiensis pollen to black swallow tails under field conditions. Proc NatI Acad Sci USA. 97: 7 700–7 711

    Article  CAS  Google Scholar 

  • Xie Y Q, Li Z Z, Wang Z J, Pan L E, Fu L Y. 2003. A study on properties of rhizopshere microorganisms of soybean genotypes with different phosphorus efficiency (in Chinese with English abstract). Acta Agr Uni Jiangxiensis. 25(4): 509–510

    Google Scholar 

  • Yu L, Berry R E, Croft B A. 1997. Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia candida (Collembola: Isotomidae) and Oppia nitens (Acari: Orbatidae). J Econ Entomol. 90: 113–118

    Google Scholar 

  • Zangerl A R, McKenna D, Wraight C L. 2001. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallow tail caterpillars under field conditions. Proc Natl Acad Sci USA. 98: 11 908–11 912

    Article  CAS  Google Scholar 

  • Zhang Q, Lin S Z, Zhang Z Y, Lin Y Z. 2002. Test of insect-resistance of transgenic poplar with CpTI gene. Forestry Studies in China. 4(2): 27–32

    Google Scholar 

  • Zhang Q, Lin S Z, Lin Y Z, Zhang Z Y. 2004. Identification of CpTI gene integration for 2-year-old transgenic poplars at DNA level. Forestry Studies in China. 6(3): 15–19

    Google Scholar 

  • Zhang Z Y, Yu X S, Zhu Z T. 2000. Sexual reproduction of hybrid triploids in Populus tomentosa (in Chinese with English abstract). J Beijing For Uni. 22 (6): 1–4

    Google Scholar 

  • Zhu L X, Zang J E, Liu W G. 2003. Review of studies on interactions between root exudates rhizospheric microorganisms. Ecol Environ. 12(1): 102–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhi-yi.

Additional information

[Supported by the National Project in Transgenic Plant and Application (Grant No. J2002-2003)]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhang, Zy., Lin, Sz. et al. Assessment of rhizospheric microorganisms of transgenic Populus tomentosa with cowpea trypsin inhibitor (CpTI) gene. For. Stud. China 7, 28–34 (2005). https://doi.org/10.1007/s11632-005-0027-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-005-0027-7

Key words

Navigation