Skip to main content
Log in

Identification of CpTI gene integration for 2-year-old transgenic poplars at DNA level

  • Published:
Forestry Studies in China

Abstract

The putative transgenic hybrid triploid poplars [(P. tomentosa × P. bolleana) × P. tomentosa] with CpTI gene have been outplanted in test field for 2 years. Although the authors’ previous studies have proved that they are highly resistant to 3 species of poplar-threatening insect pests and contain high content of CpTI protein in foliage, incorporation status of foreign CpTI gene in poplar genome is uncertain. In this present study, the incorporation of foreign CpTI gene in genome of 5 transgenic poplars was confirmed by PCR and Southern blotting analysis. DNA amplification showed that there were clear DNA bands of about 450bp specific to CpTI gene in transgenic lanes, while no corresponding band in non-transgenic lane was observed. Correspondingly, clear DNA hybridization signals and no signal were exhibited on film for DNA Southern blotting analysis in transgenic lanes and non-transgenic lane, respectively, which further confirmed the stable integration of foreign CpTI gene in genome of 2-year-old transgenic poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adams K L, Qiu Y L, Stoutemyer M et al. 2002. Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA. 99: 9 905–9 912

    Article  CAS  Google Scholar 

  • Bode W, Girard C, Lorenc K I et al. 1992. Natural protein proteinase inhibitors and their interaction with proteianses. Eur J Biochem. 204: 433

    Article  PubMed  CAS  Google Scholar 

  • Broadway R M, Duffey S S. 1986. The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol. 32: 673–680

    Article  CAS  Google Scholar 

  • Campbell M M, Brunner A M, Jones H M. et al. 2003. Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnology. 1: 141–154

    Article  CAS  Google Scholar 

  • Chen Y, Han Y F, Tian Y C et al. 1995. Study on the plant regeneration from Populus deltoids explant transformed with B. t. toxin gene. Scientia Silvae Sinica. 31(2): 97–103

    Google Scholar 

  • Christeller J T, Laing W A, Markwich N O et al. 1992. Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Biol. 22(7): 735–746

    Article  CAS  Google Scholar 

  • Confalonieri M, Allegro G, Balestrazzi A et al. 1998. Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi) gene. Molecular Breeding. 4: 137–145

    Article  CAS  Google Scholar 

  • Cornu D, Leple J C, Bonade-Bottino M et al. 1996. Somatic Cell Genetics and Molecular Genetics of Trees. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Delledonne M, Allegro G, Belenghi B et al. 2001. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Mol Breed. 7: 35–42

    Article  CAS  Google Scholar 

  • Ding S Y, Li H Y, Li X F et al. 2001. Effects of two kinds of transgenic poplar on protective enzymes system in the midgut of larvae of American white moth. J For Res. 12(2): 119–122

    Google Scholar 

  • Hammand R W, Foard D E, Larkins B A et al. 1984. Molecular cloning and analysis of a gene coding for the Bowman-Birk protease inhibitor in soybean. J Bio Chem. 259: 9 883–9 890

    Google Scholar 

  • Hao G X, Zhu Z, Zhu Z T. 1999. Transformation of Populus tomentosa with insecticidal cowpea proteinase inhibitor gene (in Chinese). Acta Botanica Sinica. 41(12): 1 276–1 282

    CAS  Google Scholar 

  • Hao G X, Zhu Z, Zhu Z T. 2000. Obtaining of cowpea proteinase inhibitor transgenic Populus tomentosa. Scientia Silvae Sinicae. 36(sp1): 116–119

    Google Scholar 

  • Haruta M S, Major I T, Christopher M E et al. 2001. A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Mol Biol. 46: 347–359

    Article  PubMed  CAS  Google Scholar 

  • Heuchelin S A, McNabb H S, Klopfenstin N B et al. 1997. Agrobacterium-mediated transformation of Populus × euramericana ‘Ogy’ using the chimeric CaMV 35S-pin2 gene fusion. Can J For Res. 27: 1 041–1 048

    Article  CAS  Google Scholar 

  • Hilder V A, Barker R F, Samour R A et al. 1989. Protein and cDNA sequences of Bowman-Birk protease inhibitors from the cowpea (Vigna unguiculata Walp.). Plant Mol Biol. 13: 701–710

    Article  PubMed  CAS  Google Scholar 

  • Hilder V A, Gatehouse A M R, Sheerman S E et al. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature. 330: 160–163

    Article  CAS  Google Scholar 

  • Johnston K A, Gatehouse J A, Anstee J H. 1993. Effects of soybean proteinase inhibitor on the growth and development of larval Helicoverpa armigera. J Insect Physiol. 39(8): 657–664

    Article  CAS  Google Scholar 

  • Johnston K A, Lee M J, Brough C et al. 1995. Protease activities in the larval midgut of Heliothis virescens: evidence for trypsin and chymotypsin-like enzyme. Insect Biochem Mol Biol. 25(3): 375–383

    Article  CAS  Google Scholar 

  • Klopfenstein N B, Shi N Q, Kernan A et al. 1991. Transgenic Populus hybrid expresses a wound-inducible potato proteinase inhibitor II-CAT gene fusion. Can J For Res. 21: 1 321–1 328

    Article  CAS  Google Scholar 

  • Leple J C, Bonade M, Augustin S et al. 1995. Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed. 1: 319–328

    Article  CAS  Google Scholar 

  • Li M L, Zhang H, Hu J J et al. 2000. Study on insect-resistant transgenic poplar plants containing both Bt and PI gene (in Chinese). Scientia Silvae Sinicae. 36(2): 93–97

    Google Scholar 

  • Lin Y Z, Zhang Q, Lin S Z et al. 2002. Identification of expression of CpTI gene in transgenic poplars at protein level. Forestry Studies in China. 4(2): 33–37

    Google Scholar 

  • Liu C M, Zhu Z, Zhou Z L et al. 1993. cDNA clone and expression of cowpea trypsin inhibitor in Escherichia coli (in Chinese). Chin J Biotech. 9(2): 152–157

    CAS  Google Scholar 

  • McCown B H, McCabe D E, Russell D R et al. 1991. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Reports. 9: 590–594

    Article  CAS  Google Scholar 

  • Meilan R, Ma C, Cheng S et al. 2000. High levels of roundup and leaf-beetle resistance in genetically engineered hybrid cottonwood. In: Hybrid Poplars in the Pacific Northwest: Culture, Commerce and Capability (Blatner K A, Johnson J D, and Baumgartner D M eds). Pullman, WA: Washington State University Cooperative Extension Bulletin MISC0272. 29–38

    Google Scholar 

  • Nakayasu M, Robert J M, Cleaver J E et al. 1988. Deletion of transfected oncogenes from NIH3T3 transformants by inhibitors of poly (ADP-ribose) polymerase. Proc Natl Acad Sci USA. 85: 9 066–9 070

    Article  CAS  Google Scholar 

  • Parcell J P, Greenplate J T, Sammons R D. 1992. Examination of midgut luminal proteinase activity in six economically important insects. Insect Biochem Mol Biol. 22: 41–47

    Article  Google Scholar 

  • Rao H Y, Chen Y, Huang M R et al. 2000. Genetic transformation of poplar NL-80106 transferred by Bt gene and its insect-resistance. J Plant Res Env. 9(2): 1–5

    CAS  Google Scholar 

  • Rogers S O, Bendich A J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol. 5: 1 041–1 045

    Article  Google Scholar 

  • Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Tian Y C, Li T Y, Mang K Q et al. 1993. Insect tolerance of transgenic Populus nigra plants transformed with a Bacillus thuringiensis toxin gene. Chin J Biotech. 9(4): 291–297

    CAS  Google Scholar 

  • Tian Y C, Zheng J B, Yu H M et al. 2000. Studies of transgenic hybrid poplar 741 carrying two insect-resistant genes. Scientia Silvae Sinicae. 42(3): 263–268

    CAS  Google Scholar 

  • Wang G, Castiglione S, Chen Y et al. 1996. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Research. 5: 289–301

    Article  CAS  Google Scholar 

  • Wang X P, Han Y F, Dai L Y et al. 1997. Studies on insect-resistant transgenic (P. × euramericana) plants. Scientia Silvae Sinicae. 33(1): 69–74

    Google Scholar 

  • Whitman T G, Floate K D, Martinsen G D et al. 1996. Ecological and evolutionary implications of hybridizations: Populus-herbivore interactions. In: Biology of Populus and Its Implications for Management and Conservation (Stettler R F, Bradshaw H D Jr, Heilman P E et al. eds). Ottawa: NRC Research Press. 247–275

    Google Scholar 

  • Wu N F, Fan Y L. 1991. Establishment of engineered poplars containing Bacillus thuringiensis δ-endotoxin gene. Chin Sci Bull. 9: 705–708

    Google Scholar 

  • Yang Q W, Dong Y S, Chen Y W et al. 1996. Studies on reversion of a transformant line and loss of exogenous ras oncogene after treatment with an inhibitor of PARP enzyme. Hereditas. 18(3): 6–8

    CAS  Google Scholar 

  • Zhang Q, Lin S Z, Zhang Z Y et al. 2002. Test of insect-resistance of transgenic poplar with CpTI gene. Forestry Studies in China. 4(2): 27–32

    Google Scholar 

  • Zhang Z Z. 1997. Forest Entomology. Beijing: China Forestry Publishing House. 221

    Google Scholar 

  • Zheng J B, Liang H Y, Sun K N et al. 1996. Regeneration of explants of Chinese poplar leaves and its transformation with insect-resistant gene. J Hebei For College. 11(2): 97–101

    Google Scholar 

  • Zheng J B, Zhang Y M Yang W Z et al. 1995. Plant regeneration of excised leaf from 741 poplar and transformation with insect-resistant B. t. toxin gene. J Agri Uni Hebei. 18(3): 20–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhiyi.

Additional information

[Supported by the National Project in Transgenic Plant and Application (Grant No. J2002-B003)]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Lin, S., Lin, Y. et al. Identification of CpTI gene integration for 2-year-old transgenic poplars at DNA level. For. Stud. China 6, 15–19 (2004). https://doi.org/10.1007/s11632-004-0035-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-004-0035-z

Key words

Navigation