Skip to main content
Log in

Melting geodynamics reveals a subduction origin for the Purang ophiolite, Tibet, China

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The debate regarding whether the Yarlung–Zangbo ophiolite (YZO) on the south of the Qinghai-Tibet Plateau, formed in a mid-ocean ridge (MOR) or a supra-subduction zone (SSZ) setting has remained unresolved. Here we present petrological, mineralogical, and geochemical data associated with modeling melting geodynamics of the mantle peridotites from the Purang ophiolite in the western segment of the Yarlung–Zangbo Suture Zone (YZSZ) to explore its tectonic environment. The Purang lherzolites are characterized by the protogranular texture and have abyssal-peridotite-like mineral compositions, including low Cr# (20–30) and TiO2 contents (<0.1wt%) in spinel, high Al2O3 (2.9wt% – 4.4wt%) and CaO (1.9wt% – 3.7wt%) contents in orthopyroxene and LREE-depletion in clinopyroxene. Compositions of these lherzolites can be modeled by ~11% dynamic melting of the DMM source with a small fraction of melt (~0.5%) entrapped within the source, a similar melting process to typical abyssal peridotites. The Purang harzburgites are characterized by the porphyroclastic texture and exhibit highly refractory mineral compositions such as high spinel Cr# (40–68), low orthopyroxene Al2O3 (<2.2wt%) and CaO (<1.1wt%) contents. Clinopyroxenes in these harzburgites are enriched in Sr (up to 6.0 ppm) and LREE [(Ce)N = 0.02–0.4], but depleted in Ti (200 ppm, on average) and HREE [(Yb)N < 2]. Importantly, the more depleted samples tend to have higher clinopyroxene Sr and LREE contents. These observations indicate an open-system hydrous melting with a continuous influx of slab fluid at a subduction zone. The modeled results show that these harzburgites could be formed by 19% – 23% hydrous melting with the supply rate of slab fluid at 0.1%–1%. The lower clinopyroxene V/Sc ratios in harzburgites than those in lherzolites suggest a high oxidation stage of the melting system of harzburgites, which is consistent with a hydrous melting environment for these harzburgites. It is therefore concluded that the Purang ophiolite has experienced a transformation of tectonic setting from MOR to SSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldanmaz E, van Hinsbergen DJJ, Yıldız-Yüksekol Ö, Schmidt MW, McPhee PJ, Meisel T, Güçtekin A, Mason PRD (2020) Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: Constraints from ophiolites in the eastern Mediterranean. Lithos. 360–361:105438.

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol. 113:191–204.

    Article  CAS  Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature. 375:308–311.

    Article  CAS  Google Scholar 

  • Bao PS, Su L, Wang J, Zhai QG (2014) Origin of the Zedang and Luobusa ophiolites, Tibet. Acta Geol Sin. 88:669–698.

    Article  Google Scholar 

  • Barrett N, Jaques AY, González-Álvarez I, Walter MJ, Pearson G (2022) Ultra-refractory peridotites of Phanerozoic mantle origin: The Papua New Guinea ophiolite mantle tectonites. J Petrol. 63(3):1–30.

    Article  CAS  Google Scholar 

  • Bénard A, Arculus RJ, Nebel O, Ionov DA, McAlpine SRB (2017) Silica-enriched mantle sources of picrite-boninite-andesite island arc magmas. Geochim Cosmochim Acta. 199:287–303.

    Article  Google Scholar 

  • Bénard A, Müntener O, Pilet S, Arculus RJ, Nebel O (2021) Silica-rich spinel harzburgite residues formed by fractional hybridization-melting of the intra-oceanic supra-subduction zone mantle: New evidence from TUBAF seamount peridotites. Geochim Cosmochim Acta. 293:477–506.

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/∑Fe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta. 69:711–725.

    Article  Google Scholar 

  • Birner SK, Warren JM, Cottrell E, Davis FA, Kelley KA, Falloon TJ (2017) Forearc peridotites from tonga record heterogeneous oxidation of the mantle following subduction initiation. J Petrol. 58(09):1755–1780.

    Article  CAS  Google Scholar 

  • Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol. 165:67–85.

    Article  CAS  Google Scholar 

  • Brunelli D, Seyler M, Cipriani A, Ottolini L, Bonatti E (2006) Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema Lithospheric Section (Mid-Atlantic Ridge). J Petrol. 47:745–771.

    Article  CAS  Google Scholar 

  • Bryndzia L, Wood B, Dick H (1989) The oxidation state of the Earth’s sub-oceanic mantle from oxygen thermobarometry of abyssal spinel peridotites. Nature. 341:526–527.

    Article  CAS  Google Scholar 

  • Choi SH, Shervais JW, Mukasa SB (2008) Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib Mineral Petrol. 156:551–576.

    Article  CAS  Google Scholar 

  • Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett. 305:270–282.

    Article  CAS  Google Scholar 

  • Czertowicz TA, Scott JM, Waight TE, Palin JM, Van der Meer QHA, Le Roux P, Münker C, Piazolo S (2016) The Anita peridotite, New Zealand: Ultra-depletion and subtle enrichment in sub-arc mantle. J Petrol. 57(4):717–750.

    Article  CAS  Google Scholar 

  • Dai JG, Wang CS, Hébert R, Santosh M, Li YL, Xu JY (2011) Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chem Geol. 288:133–148.

    Article  CAS  Google Scholar 

  • Day JMD, Brown DB (2021) Ancient melt-depletion in fresh to strongly serpentinized Tonga Trench peridotites. J Petrol. 62(12):1–23.

    Article  CAS  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol. 86:54–76.

    Article  CAS  Google Scholar 

  • Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology. 40:783–786.

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol. 131:323–346.

    Article  CAS  Google Scholar 

  • Gong XH, Shi RD, Griffin WL, Huang QS, Xiong Q, Chen SS, Zhang M, O’Reilly SY (2016) Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet). Lithos. 262:11–26.

    Article  CAS  Google Scholar 

  • Gong XH, Shi RD, Xu JF, Huang XX, Su BX (2019) “Garnet” lherzolites in the Purang ophiolite, Tibet: Evidence for exhumation of deep oceanic lithospheric mantle. Geophy Res Lett. 47:e2019GL086101.

    Article  Google Scholar 

  • Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JX, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M, O’Reilly SY (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol. 57:655–684.

    Article  CAS  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett. 249:74–89.

    Article  CAS  Google Scholar 

  • Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS, Liu ZF (2012) The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res. 22:377–397.

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature. 410:677–681.

    Article  CAS  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofman AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol. 43:2305–2338.

    Article  CAS  Google Scholar 

  • Hu XM, Garzanti E, Moore T, Raffi I (2015) Direct stratigraphic dating of India-Asia collision onset at the Selandian (Middle Paleocene, 59 ± 1 Ma). Geology. 43:859–862.

    Article  Google Scholar 

  • Hu J, Zhong H, Ruan T, Zheng SJ, Bai ZJ (2022) Characteristics of source of the Purang pyrolite in the western Yarlung-Zangbo suture zone. Acta Miner Sin. 05:1–15 (in Chinese with English abstract).

    Google Scholar 

  • Ionov DA (2010) Petrology of mantle wedge lithosphere: New data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. J Petrol. 51:327–361.

    Article  CAS  Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc, Leg 125. In: Proceedings of the ocean drilling program, 125 scientific results. Ocean Drilling Program, College Station, TX, pp 445–485.

  • Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka. J Petrol. 48:395–433.

    Article  CAS  Google Scholar 

  • Jean MM, Shervais JW, Choi SH, Mukasa SB (2010) Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: An LA–ICP–MS study. Contrib Miner Petrol. 159:113–136.

    Article  CAS  Google Scholar 

  • Johnson K, Dick H, Shimizu N (1990) Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J Geophys Res Solid Earth. 95:2661–2678.

    Article  Google Scholar 

  • Kanke N, Takazawa E (2015) A kilometre-scale highly refractory harzburgite zone in the mantle section of the northern Oman Ophiolite (Fizh Block): Implications for flux melting of oceanic lithospheric mantle. Geol Soc Lond Spec Publ. 392:229–246.

    Article  Google Scholar 

  • Le Roux V, Dick HJB, Shimizu N (2014) Tracking flux melting and melt percolation in supra-subduction peridotites (Josephine ophiolite, USA). Contrib Miner Petrol. 168:1064.

    Article  Google Scholar 

  • Lee CT, Leeman WP, Canil D, Li ZX (2005) Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions. J Petrol. 46:2313–2336.

    Article  CAS  Google Scholar 

  • Li YB, Kimura JI, Machida S, Ishii T, Ishiwatari A, Maruyama M, Qiu HN, Ishikawa T, Kato Y, Haraguchi S, Takahata N, Hirahara Y, Miyazaki T (2013) High-Mg adakite and low-Ca boninite from a Bonin fore-arc seamount: Implications for the reaction between slab melts and depleted mantle. J Petrol. 54:1149–1175.

    Article  CAS  Google Scholar 

  • Lin KY, Wang KL, Sun LC, Bingöl AF, Iizuka Y, Lee HY (2020) Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos. 376–377:105737.

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol. 257:34–43.

    Article  CAS  Google Scholar 

  • Liu CZ, Wu FY, Wilde SA, Yu LJ, Li JL (2010) Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos. 114:413–422.

    Article  CAS  Google Scholar 

  • Liu Z, Li Y, Xiong FH, Wu D, Liu F (2011) Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet, China. Acta Petrol Sin. 27(11):3269–3279.

    CAS  Google Scholar 

  • Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ, Li JL (2012) Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. J Asian Earth Sci. 53:38–50.

    Article  Google Scholar 

  • Liu F, Yang JS, Chen SY, Li ZL, Lian DY, Zhou WD, Zhang L (2013) Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone: Evidence for intra-oceanic supra-subduction within the Neo-Tethys. Geol Chin. 40:361–374 (in Chinese with English abstract).

    Google Scholar 

  • Liu CZ, Zhang C, Yang LY, Zhang LL, Ji WQ, Wu FY (2014) Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos. 205:127–141.

    Article  CAS  Google Scholar 

  • Liu F, Yang JS, Dilek Y, Xu ZQ, Xu XZ, Liang FH, Chen SY, Lian DY (2015) Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet. Gondwana Res. 27:701–718

    Article  CAS  Google Scholar 

  • Liu CZ, Zhang L, Xu Y, Wang JG, Chen Y, Guo S, Wu FY, Sein K (2016) Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos. 264:495–508.

    Article  CAS  Google Scholar 

  • Liu T, Wu FY, Liu CZ, Zhang C, Ji WB, Xu Y (2019) Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contrib Mineral Petrol. 174:23.

    Article  Google Scholar 

  • Mallmann G, O’Neill HStC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol. 50:1765–1794.

    Article  CAS  Google Scholar 

  • Miller C, Thöni M, Frank W, Schuster R, Melcher F, Meisel T, Zanetti A (2003) Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos. 66:155–172.

    Article  CAS  Google Scholar 

  • Niu YL (2004) Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol. 45:2423–2458.

    Article  CAS  Google Scholar 

  • Ozawa K, Shimizu N (1995) Open-system melting in the upper mantle: Constraints from the Hayachine-Miyamori ophiolite, northeastern Japan. J Geophys Res. 100:22315–22335.

    Article  CAS  Google Scholar 

  • Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu–Bonin–Mariana foracr, Leg 125. In: Proceedings of the ocean drilling program, 125 scientific results. Ocean Drilling Program, College Station, TX, pp 487–506.

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J Petrol. 39:1577–1618.

    Article  CAS  Google Scholar 

  • Parman SW, Grove TL (2004) Harzburgite melting with and without H2O: Experimental data and predictive modelling. J Geophys Res. 109:B02201.

    Google Scholar 

  • Rizeli ME, Beyarslan M, Wang KL, Bingöl AF (2016) Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): Evidence of a forearc setting. J Afr Earth Sci. 123:392–402.

    Article  CAS  Google Scholar 

  • Rizeli ME, Bingöl AF, Wang KL, Lee HY (2023) Abyssal and forearc features of mantle peridotites in the Guleman ophiolite in SE Turkey. Lithos. 436–437:106958.

    Article  Google Scholar 

  • Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral. 38:1041–1063.

    Article  CAS  Google Scholar 

  • Shervais JW, Jean MM (2012) Inside the subduction factory: Modeling fluid mobile element enrichment in the mantle wedge above a subduction zone. Geochim Cosmochim Acta. 95:270–285.

    Article  CAS  Google Scholar 

  • Suhr G, Edwards SJ (2000) Contrasting mantle sequences exposed in the Lewis Hills massif: Evidence for the early, arc-related history of the Bay of Islands ophiolite. Geol Soc Am Sp Pap. 349:433–442.

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ. 42:313–345.

    Article  Google Scholar 

  • Taylor RN, Nesbitt RW, Vidal P, Harmon RS, Auvray B, Croudace IW (1994) Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J Petrol. 35:577–617.

    Article  CAS  Google Scholar 

  • Tollan PME, Dale CW, Hermann J, Davidson JP, Arculus RJ (2017) Generation and modification of the mantle wedge and lithosphere beneath the West Bismarck island arc: melting, metasomatism and thermal history of peridotite xenoliths from Ritter Island. J Petrol. 58:1475–1510.

    Article  CAS  Google Scholar 

  • Urann BM, Dick HJB, Parnell-Turner R, Casey JF (2020) Recycled arc mantle recovered from the Mid-Atlantic Ridge. Nat Comm. 11:3887.

    Article  CAS  Google Scholar 

  • Uysal İ, Ersoy EY, Karslı O, Dilek Y, Sadıklar MB, Ottley CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos. 132–133:50–69.

    Article  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos. 248–251:193–219.

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett. 231:53–72.

    Article  CAS  Google Scholar 

  • Xiong FH, Yang JS, Xu XZ, Kapsiotis A, Hao XL, Liu Z (2018) Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China). J Asian Earth Sci. 159:109–129.

    Article  Google Scholar 

  • Xiong FH, Liu Z, Kapsiotis A, Yang JS, Lenaz D, Robinson PT (2019) Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo suture zone, Tibet: Origin and significance of ultra-high pressure and other ‘unusual’ minerals in the Neo-Tethyan lithospheric mantle. Int Geol Rev. https://doi.org/10.1080/00206814.2019.1584771

    Article  Google Scholar 

  • Xiong FH, Meng YK, Yang JS, Liu Z, Xu XZ, Eslami A, Zhang R (2020) Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geosci Front. 11:277–292.

    Article  CAS  Google Scholar 

  • Xiong FH, Zoheir B, Robinson PT, Wirth R, Xu XZ, Qiu T, Sun Y (2023) Microchemistry and magnesium isotope composition of the Purang ophiolitic chromitites (SW Tibet): New genetic inferences. Am Miner. 108:1117–1131.

    Article  Google Scholar 

  • Xu XZ, Yang JS, Guo GL, Li JY (2011) Lithological research on the Purang mantle peridotite in western Yarlung-Zangbo suture zone in Tibet. Acta Petrol Sin. 27(11):3179–3196.

    CAS  Google Scholar 

  • Xu Y, Liu JG, Xiong Q, Su BX, Scott JM, Xu B, Zhu DC, Pearson DG (2020) The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochim Cosmochim Acta. 277:175–191.

    Article  CAS  Google Scholar 

  • Xu Y, Liu CZ, Lin W (2021) Melt extraction and reaction in the forearc mantle: Constraints from trace elements and isotope geochemistry of ultra-refractory peridotites of the New Caledonia Peridotite Nappe. Lithos. 380–381:105882.

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci. 28:211–280.

    Article  CAS  Google Scholar 

  • Zanetti A, D’Antonio M, Spadea RN, Vannucci R, Bruguier O (2006) Petrogenesis of mantle peridotites from the Izu–Bonin–Mariana (IBM) forearc. Ofioliti. 31(2):189–206.

    Google Scholar 

  • Zhang C, Liu CZ, Wu FY, Zhang LL, Ji WQ (2016) Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos. 245:93–108.

    Article  CAS  Google Scholar 

  • Zheng H, Huang QT, Kapsiotis A, Lenaz D, Velicogna M, Xu C, Cheng C, Xia B, Liu WL, Xiao Y, Peng Y (2019) Coexistence of MORB- and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle. Geol Soc Am Bull. 131:1276–1294.

    Article  CAS  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. J Petrol. 46:615–639.

    Article  CAS  Google Scholar 

  • Zou HB (1998) Trace element fractionation during modal and nonmodal dynamic melting and open-system melting; a mathematical treatment. Geochim Cosmochim Acta. 62:1937–1945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the lab technicians, Wen-Qin Zheng, Xiang Li, and Yun Li for their assistance with the electron probe micro-analyses, and Yan-Wen Tang for his help with the LA-ICP-MS analyses and data processing. This research was financially supported by the Second Qinghai-Tibet Plateau Scientific Expedition and Research (SETP) (2019QZKK0806-02) and the National Natural Science Foundation of China (42121003, 42122024) , CAS “Light of West China” Program (xbzg-zdsys-202310), Guizhou Provincial High level Innovation Talent program (GCC[2023]057) and Guizhou Provincial 2021 Science and Technology Subsidies (No. GZ2021SIG).

Funding

This research was supported by the Second Tibetan Plateau Scientific Expedition and Research (SETP) (2019QZKK0806-02), the National Natural Science Foundation of China (42121003, 42122024), CAS “Light of West China” Program (xbzg-zdsys-202310), Guizhou Provincial High level Innovation Talent program (GCC[2023]057) and Guizhou Provincial 2021 Science and Technology Subsidies (No. GZ2021SIG).

Author information

Authors and Affiliations

Authors

Contributions

Tao Ruan: coming up with the theme of this manuscript, conducting analyses to obtain geochemical data, drawing figures and writing this original manuscript; Zhong-Jie Bai: applying for funding, conducting field work and revising manuscript; Wei-Guang Zhu: guiding the experiments and polishing the manuscript; Shi-Ji Zheng: conducting field work and editing the manuscript.

Corresponding author

Correspondence to Zhong-Jie Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not available.

Electronic supplementary material

Appendix

Appendix

1.1 The mass balance equations used in modeling melting geodynamics

1.1.1 Fractional and dynamic melting

Fractional melting can effectively extract incompatible trace elements from peridotites into melts and has been used to quantitatively model the melting history of abyssal peridotites in modern oceanic lithospheric mantle (Johnson et al. 1990; Hellebrand et al. 2002; Warren 2016). However, the more realistic geological fact is that some partial melts might not be completely extracted from the source and trapped within the mantle (e.g., Hellebrand et al. 2002; Brunelli et al. 2006), which is defined as dynamic melting (Zou 1998; Shaw 2000). The equations for fractional and dynamic melting are from Zou (1998):

$${{\varvec{C}}}_{{\varvec{r}}{\varvec{e}}{\varvec{s}}}=\frac{{{\varvec{C}}}_{{\varvec{o}}}}{1-{\varvec{X}}}{\left\{1-\frac{{\varvec{X}}[{\varvec{P}}+\boldsymbol{\Phi }(1-{\varvec{P}})}{{{\varvec{D}}}_{0}+\boldsymbol{\Phi }(1-{\varvec{P}})}\right\}}^{1/[\boldsymbol{\Phi }+\left(1-\boldsymbol{\Phi }\right){\varvec{P}}}$$
(1)
$${{\varvec{C}}}_{{\varvec{f}}}=\frac{{{\varvec{C}}}_{{\varvec{r}}{\varvec{e}}{\varvec{s}}}}{{\varvec{\Phi}}\left(1-{\varvec{F}}\right)+({{\varvec{D}}}_{0}-{\varvec{F}}{\varvec{P}})}$$
(2)
$$\overline{{{\varvec{C}} }_{{\varvec{L}}}}=\frac{{{\varvec{C}}}_{0}}{{\varvec{X}}}\left\{1-{[1-\frac{{\varvec{X}}[{\varvec{P}}+{\varvec{\Phi}}(1-{\varvec{P}})}{{{\varvec{D}}}_{0}+{\varvec{\Phi}}\left(1-{\varvec{P}}\right)}]}^{1/[{\varvec{\Phi}}+\left(1-{\varvec{\Phi}}\right)\mathbf{P}}\right\}$$
(3)

where Cres: the concentration of an element in the residual mantle (residual solid + retained melt); C0: the concentration of an element in the initial mantle source (DMM); X: the mass ratio of melt to solid; P: the weighted proportions of minerals entering melt. \({\varvec{P}}=\boldsymbol{ }\sum {{\varvec{p}}}^{{\varvec{i}}}{{\varvec{K}}}_{{\varvec{d}}}\), where \({{\varvec{p}}}^{{\varvec{i}}}\) is the melting mode of mineral phase i, and \({{\varvec{K}}}_{{\varvec{d}}}\) is the mineral/melt partitioning coefficient of an element; Φ: the critical mass porosity, which determines the mass fractions of retained melt in the source. When Φ = 0, these equations are suitable for fractional melting. When F < Φ, no melt is escaped from the source (i.e., X = 0), and the melting mode becomes batch melting. When F > Φ, X = (F-Φ)/(1-Φ); D0: the initial bulk partitioning coefficient of an element. \({{\varvec{D}}}_{0}=\sum {{\varvec{K}}}_{{\varvec{d}}}{{\varvec{X}}}_{0}^{{\varvec{i}}}\), \({{\varvec{X}}}_{0}^{{\varvec{i}}}\) is the initial modal proportion of mineral phase I; Cf: the composition of an element in the last drop of extracted melt in equilibrium with mantle minerals; \(\overline{{{\varvec{C}} }_{{\varvec{L}}}}\): the concentration of an element in the accumulated melt (i.e., the total of extracted melt).

1.1.2 Open-system fluid-influx melting (OSFM)

OSFM has been proposed to quantitatively model the melting history of mantle wedge at subduction zones (Zou 1998; Shaw 2000). The most striking feature of such a melting process is that many incompatible trace element compositions might buffered by the slab-fluid, especially for fluid-mobile elements (e.g., Sr and LREE). Therefore, LREE- and Sr-enriched clinopyroxenes might be expected in this melting process (e.g., Ozawa and Shimizu 1995; Suhr and Edwards 2000; Bizimis et al. 2000; Le Roux et al. 2014). On the other hand, minerals will become more refractory because of higher degrees of melting promoted by the introduction of slab-fluid at subduction zones. Geochemically, the degrees of mineral refractory (such as spinel Cr#) are positively correlated with clinopyroxene LREE and Sr (e.g., Ozawa and Shimizu 1995; Lin et al. 2020).

Generally, OSFM consists of three parts (Shaw 2000): (1) the supply of slab fluid. To simplify the calculation, it is assumed that this fluid is added into the source at a constant rate β (mass fractions, relative to F), which builds a bridge to connect the mantle with slab fluid, (2) the extraction of arc magmas, and (3) the residual source (residual solid and retained melt). After every incremental melting, the newly produced melt will mix with slab fluid to form a mixing melt. Then the mixing melt is distributed between the mantle (small melt was retained in the source) and crust (most melt was expelled to form the crust). The equations for open-system fluid-influx melting are from Shaw (2000):

$${{\varvec{C}}}_{{\varvec{f}}}=\left[{\varvec{A}}-{\varvec{x}}{{\varvec{C}}}_{{\varvec{s}}{\varvec{l}}{\varvec{a}}{\varvec{b}}}\right]\times {[\frac{1-{\varvec{z}}{\varvec{F}}}{1-{\varvec{z}}{\varvec{\Phi}}}]}^{{\varvec{y}}}+{\varvec{x}}{{\varvec{C}}}_{{\varvec{s}}{\varvec{l}}{\varvec{a}}{\varvec{b}}}$$
$${{\varvec{C}}}_{{\varvec{r}}{\varvec{e}}{\varvec{s}}}={{\varvec{C}}}_{{\varvec{f}}}\frac{\boldsymbol{\alpha }+{{\varvec{D}}}_{{\varvec{b}}{\varvec{u}}{\varvec{l}}{\varvec{k}}}}{1+\boldsymbol{\alpha }}$$
$$\overline{{{\varvec{C}} }_{{\varvec{L}}}}=\frac{{{\varvec{C}}}_{0}+{{\varvec{C}}}_{{\varvec{s}}{\varvec{l}}{\varvec{a}}{\varvec{b}}}{\varvec{\beta}}{\varvec{F}}-{{\varvec{C}}}_{{\varvec{s}}}(1-{\varvec{F}})}{{\varvec{F}}(1+{\varvec{\beta}})}$$
$$\mathbf{A}=\frac{{{\varvec{C}}}_{0}+{\varvec{\Phi}}{\varvec{\beta}}{{\varvec{C}}}_{{\varvec{s}}{\varvec{l}}{\varvec{a}}{\varvec{b}}}}{{{\varvec{D}}}_{0}+{\varvec{\Phi}}\left(1+{\varvec{\beta}}\right)\left(1-{\varvec{P}}\right)};\boldsymbol{ }{\varvec{x}}=\frac{{\varvec{\beta}}}{\left(1+{\varvec{\beta}}\right)\left(1-{\varvec{P}}\right)};\boldsymbol{ }{\varvec{y}}=\frac{\left(1+{\varvec{\beta}}\right)\left(1-{\varvec{P}}\right)}{\boldsymbol{\alpha }+{\varvec{P}}\left(1-{\varvec{\beta}}\right)};\boldsymbol{ }{\varvec{z}}=\frac{\boldsymbol{\alpha }+{\varvec{P}}(1-{\varvec{\beta}})}{{{\varvec{D}}}_{0}+\boldsymbol{\alpha }}$$

where, β: the supply rate of continuous influx of slab fluid, relative to F; \({{\varvec{C}}}_{{\varvec{s}}{\varvec{l}}{\varvec{a}}{\varvec{b}}}\): the concentration of an element in slab fluid; α: the mass ratio of mixing melt (partial melt + slab fluid) to residual solid. \(\boldsymbol{\alpha }=\frac{\boldsymbol{\Phi }(1+{\varvec{\beta}})}{1-\boldsymbol{\Phi }}\); \({{\varvec{D}}}_{{\varvec{b}}{\varvec{u}}{\varvec{l}}{\varvec{k}}}\): the bulk partitioning coefficient of an element when the melting degree is at F.

$${{\varvec{D}}}_{{\varvec{b}}{\varvec{u}}{\varvec{l}}{\varvec{k}}}=\frac{{{\varvec{D}}}_{0}-{\varvec{F}}{\varvec{P}}(1+{\varvec{\beta}})}{1-{\varvec{F}}}=\frac{{{\varvec{C}}}_{{\varvec{s}}}}{{{\varvec{C}}}_{{\varvec{f}}}}.$$

Other parameters are noted in Sect. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, T., Bai, ZJ., Zhu, WG. et al. Melting geodynamics reveals a subduction origin for the Purang ophiolite, Tibet, China. Acta Geochim (2024). https://doi.org/10.1007/s11631-024-00687-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11631-024-00687-1

Keywords

Navigation