Skip to main content
Log in

Petrogenesis of the Mayo-Darley tin formations, anorogenic complex of the Cameroon Line: implication for tin deposit

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Mayo-Darley massif is an anorogenic complex of the Cameroon Line that has a mantle origin. Tin-bearing rocks were analyzed by ICP-AES and INAA analytical methods. The purpose of this work was to provide new geochemical data for the Mayo-Darley tin formation and to understand its petrogenesis and the origin of tin mineralization. The Mayo-Darley tin deposit is made up of tin-granite, and tin-greisen, greisenification was developed on the borders of quartz dykes. These rocks belong to the alkaline series and were classified into acid (SiO2 = 61.6%–73.8%; 65.4%–98% respectively) and basic (42.9%–47% SiO2) rocks. They showed enrichment in HSFE, LILE, Ga/Al and chondrite normalized REE patterns indicating LREE enrichment relative to HREE with a negative Eu anomaly, only sample SB8 of tin-granite showed Eu/Eu* = 1.11. Rocks display metaluminous, peralkaline, peraluminous, ferroan, high-K calc-alkaline to shoshonitic, alkalic to calcic affinity, and crystallized at 800 °C. The chemistry of this deposit reflects the primary composition of granite, quartz monzonite, gabbro, and foid gabbro. This complex experienced multi-stage sub-solidus hydrothermal fluid reactions and shows variable alteration of feldspars alkali mobility. The rocks are classified as A1-type granite, overlap with the OIB field, and were derived from a within-plate setting, similar to mantle non plume-derived magmas. The origin of tin mineralization in Mayo-Darley has a complex evolution, tin mineralization was derived from hydrothermal and hydrogenous metal-rich deposits and shows Sn–Hf–Zr and Sn–Tl–Nb association. These new data confirm the complexity of the Mayo-Darley tin complex and elucidate the origin of tin mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aka FT, Yokoyama T, Kusakaba M, Nakamura E, Tanyileke G, Ateba B et al (2008) U-series dating of Lake Nyos maar basalts Cameroon (West Africa): implications for potential hazards on the Lake Nyos dam. J Volcanol Geotherm Res 176:212–224

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285

    Article  Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chem Geol 48:43–55

    Article  Google Scholar 

  • Bensalah MK, Youbi N, Mata J, Madeira J, Mains HH, Bertrand H, Marzoli A, Bellieni G, Doblas M, Font E, Medina F, Mahmoudi A, Beraouz EH, Miranda R, Verati C, De Min A, Ben Abou M, Zayane R (2013) The Triassic-Cretaceous basaltic magmatism of the Oued El Abid syncline (High Atlas, Morocco): physical volcanology, geochemistry and geodynamic implications. J Afr Earth Sci 81:60–81

    Article  Google Scholar 

  • Bonatti E (1975) Metallogenesis at oceanic spreading centers. Annu Rev Earth Planet Sci 3:401–433

    Article  Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in postcollisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24. https://doi.org/10.1016/j.lithos.2004.04.042

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97(1–2):1–29

    Article  Google Scholar 

  • Bonin B, Janoušek V, Moyen JF (2020) Chemical variation, modal composition and classification of granitoids. In: Janoušek V, Bonin B, Collins WJ, Farina F, Bowden A (eds) Post-Archean granitic rocks: contrasting petrogenetic processes and tectonic environments, vol 491. Geological Society London Special Publications, London, pp 9–51. https://doi.org/10.1144/SP491-2019-138

    Chapter  Google Scholar 

  • Burke K (2001) Origin of the Cameroon line of volcano-capped swells. J Geol 109:349–362

    Article  Google Scholar 

  • Caldeira R, Munha JM (2002) Petrology of ultramafic nodules from Sao Tomé Island, Cameroon Volcanic Line (oceanic sector). J Afr Earth Sci 34:231–246

    Article  Google Scholar 

  • Cantagrel JM, Jamond C, Lassere M (1978) Le magmatisme alcalin de la ligne Cameroun. Fasc 6:300–303

    Google Scholar 

  • Carlin JF Jr (2014) Tin [advance release]. In: Metals and minerals: U.S. Geological Survey Minerals Yearbook 2012, vol 1, pp 77.1–77.9. http://minerals.usgs.gov/minerals/pubs/commodity/tin/myb1-2012-tin.pdf. Accessed 9 March 2016

  • Choi JH, Hariya Y (1992) Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido. Econ Geol 87:1265–1274

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200

  • Cowen R (1999) Chapter 3—fire and metals: Richard Cowen Web page, accessed March 2, 2016. Essay prepared as part of draft geology textbook manuscript. http://mygeologypage.ucdavis.edu/cowen/~gel115/115CH3.html

  • De Beaumont E (1847) Note sur les émanations volcaniques et métallifères. Bull Soc Géol France 2(4):1249–1334

    Google Scholar 

  • Deruelle B, Moreau C, Nkoumbou C, Kambou R, Lissom J, Njonfang E, Ghogomu RT, Nono A (1991) The Cameroon Line: a review. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings. The Phanerozoic African plate. Springer, Heidelberg, pp 274–327

    Chapter  Google Scholar 

  • Deruelle B, Ngounouno I, Demaiffe D (2007) The Cameroon Hot Line (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C R Geosci 339:589–598

    Article  Google Scholar 

  • Dostal J, Kontak DJ, Karl SM (2014) The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization. Lithos 202–203:395–412

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids a review of their occurrence and chemical characteristics and speculations their petrogenesis. Lithos 26:115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • Evensen NM, Hamilton MJ, O’Nions RJ (1978) Rare earth abundances in chondritic meteorites. Geochem Cosmochim Acta 42:1199–1212

    Article  Google Scholar 

  • Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin

    Book  Google Scholar 

  • Fitton JG, Dunlop HM (1985) The Cameroon Line, West Africa, and its bearing on the origin of the oceanic and continental alkali basalt. Earth Planet Sci Lett 72:23–38

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gazel J (1956) Absolute ages of massif granites and tin mineralisation in Cameroon, pp 30–34

  • Gazel J, Lasserre M, Limasset, JC, Vachette M (1963) Ages absolus des massifs granitiques ultimes et de la minéralisation en étain du Cameroun. Comptes Rendus Hebdomadaires des Séances de L'Académie des Sciences. Paris 256:2875–2878

  • Girei MB, Li H, Algeo TJ, Bonin B, Ogunleye OP, Bute SI, Ahmed HA (2019) Petrogenesis of A-type granites associated with Sn–Nb–Zn mineralization in Ririwai complex, north-Central Nigeria: constraints from whole-rock Sm–Nd and zircon Lu–Hf isotope systematics. Lithos 340–341:49–70

    Article  Google Scholar 

  • Grant NK, Rex DC, Feeth SJ (1972) Potassium-argon ages and strontium isotope ratio measurements from volcanic rocks in northeastern Nigeria. Contrib Mineral Petrol 35:277–292

    Article  Google Scholar 

  • Grebennikov AV (2014) A-type granites and related rocks: petrogenesis and classification. Russ Geol Geophys 55:1354–1366. https://doi.org/10.1016/j.rgg.2014.10.011

    Article  Google Scholar 

  • Green TH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic–felsic compositions at high P, T. Chem Geol 54:185–201

    Article  Google Scholar 

  • Guiraud R, Maurin JC (1992) Early Cretaceous rift of western and central Africa: an overview. Tectonophysics 213:153–168

    Article  Google Scholar 

  • Guo Z, Wilson M (2012) The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res 22:360–376

    Article  Google Scholar 

  • Haapala I (1997) Magmatic and postmagmatic processes in tin-mineralized granites: topaz-bearing leucogranite in the Eurajoki rapakivi granite stock, Finland. J Petrol 38:1645–1659

    Article  Google Scholar 

  • Hao Z, Cheng-Hui H, Santosh M, Hai-Feng C, Chang-Cheng H, Xin-Wei C, Hong-Kui L, Xin J, Li-Ming Y, Min L (2022) Crust-derived felsic magmatism in the Emeishan large igneous Province: new evidence from zircon U–Pb–Hf–O isotope from the Yangtze Block. Chin Geosci Front. https://doi.org/10.1016/j.gsf.2022.101369

    Article  Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism, vol 19. Geological Society London Special Publications, London, pp 67–81. https://doi.org/10.1144/GSL.SP.1986.019.01.04

    Book  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim et Cosmochim Acta 48:1467–1477. https://doi.org/10.1016/0016-7037(84)90403

  • Heiserman DL (1992) Exploring chemical elements and their compounds. Tab Books, Blue Ridge Summit

    Google Scholar 

  • Humboldt AV (1823) Essai géognostique sur le gisement des roches dans les deux hémisphères. Strasbourg, Levrult, p 364

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classifications of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Kampunzu AB, Popoff M (1991) Distribution of the main Phanerozoic African rifts and associated magmatism: introductory notes. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings. The Phanerozoic African plate. Springer, Berlin, pp 2–10

    Chapter  Google Scholar 

  • Kaur P, Chaudhri N, Hofmann AW, Raczek I, Okrusch M, Skora S, Baumgartner LP (2012) Two-stage, extreme albitization of A-type granites from Rajasthan, NW India. J Petrol 53:919–948. https://doi.org/10.1093/petrology/egs003

    Article  Google Scholar 

  • Kinnaird JA, Bowden P, Ixer RA, Odling NWA (1985) Mineralogy, geochemistry and mineralization of the Ririwai complex, northern Nigeria. J Afr Earth Sci 3:185–222. https://doi.org/10.1016/0899-5362(85)90036-3

    Article  Google Scholar 

  • Koch P (1959) Le Précambrien de la frontière occidentale du Cameroun central. Bull Dir Mines et geol Cameroun 3:160–164

    Google Scholar 

  • Kretz R (1983) Symbols of rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Kwekam M, Légeois JP, Njonfang E, Affaton P, Hartmann G, Tchoua FM (2010) Nature, origin, and significance of the Fomopéa Pan-African high-k calc-alkaline plutonic complex in the Central African fold belt (Cameroon). J Afri Earth Sci 57:79–95. https://doi.org/10.1016/j.jafrearsci.2009.07.012

  • Lasserre M (1978) Mise au point sur les granitoïdes dits «ultimes» du Cameroun: gisement, pétrographie et géochronologie. Bull BRGM 2:143–159

    Google Scholar 

  • Lasserre M, Soba D (1977) Age Libérien des granodiorites et des gneiss à pyroxènes du Cameroun Méridional. Bull BRGM 2:17–32

    Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. In: Bhattacharji S, Friedman GM, Neugebauer HJ, Seilacher A (eds) Lecture notes in Earth Sciences [no. 32]. Springer, Berlin

    Google Scholar 

  • Lehmann B (2021) Formation of tin ore deposits: a reassessment. Lithos 402–403. https://doi.org/10.1016/j.lithos.2020.105756

  • Lehmann B, Mahawat C (1989) Metallogeny of tin in Central Thailand: a genetic concept. Geology 17:426–429

    Article  Google Scholar 

  • Lehmann B, Halder S, Ruzindana Munana J, de la Paix NJ, Biryabarema M (2014) The geochemical signature of rare-metal pegmatites in Central Africa: magmatic rocks in the Gatumba tin-tantalum mining district, Rwanda. J Geochem Explor 144:528–538

    Article  Google Scholar 

  • Lehmann B, Zoheir BA, Neymark LA, Zeh A, Emam A, Radwan AM, Zhang RQ, Moscati RJ (2020) Monazite and cassiterite U Pb dating of the Abu Dabbab raremetal granite, Egypt: late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield. Gondwana Res 84:71–80

    Article  Google Scholar 

  • Li H, Ling MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL, Sun WD (2012) A-type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction. Lithos 150:26–36

    Article  Google Scholar 

  • Li H, Palinkaš LA, Watanabe K, Xi XS (2018a) Petrogenesis of Jurassic A-type granites associated with Cu–Mo and W–Sn deposits in the central Nanling region, South China: relation to mantle upwelling and intra-continental extension. Ore Geol Rev 92:449–462. https://doi.org/10.1016/j.oregeorev.2017.11.029

    Article  Google Scholar 

  • Li H, Wu JH, Evans NJ, Jiang WC, Zhou ZK (2018b) Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: insights into multi-stage Snpolymetallic mineralization in South China. Lithos 312–313:1–20

    Article  Google Scholar 

  • Linnen RL (1998) Depth of emplacement, fluid provenance and metalllogeny in granitic terranes: a comparison of western Thailand with other tin belts. Min Depos 33:461–476

    Article  Google Scholar 

  • Linnen RL, Samson IM, Williams-Jones AE, Chakhmouradian AR (2014) Geochemistry of the rare earth element, Nb, Ta, Hf and Zr deposits. In: Treatise on geochemistry (2nd edn) 13:543–568. https://doi.org/10.1016/B978-0-08-095975-7.01124-4

  • Lu J, Zhang Ch, Liu D (2020) Geochronological, geochemical and SrNd-Hf isotopic studies of the A-type granites and adakitic granodiorites in Western Junggar: petrogenesis and tectonic implications. Minerals 10:397. https://doi.org/10.3390/min10050397

    Article  Google Scholar 

  • Menzie WD, Reed BL (1986) Grade and tonnage model of Sn greisen. In: Cox DP, Singer DA (eds) Mineral deposit models. U.S. Geological Survey Bulletin 1693, pp 71–72

  • Meyers JB, Rosendahl BR, Harrison CGA, Ding ZD (1998) Deepimaging seismic and gravity results from offshore Cameroon Volcanic Line and speculation of African hot-lines. Tectonophysics 284:31–63

    Article  Google Scholar 

  • Middlemost EAK (1985) Naming material in the magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Milelli L, Fourel L, Jaupart C (2011) A lithospheric instability origin for the Cameroon Volcanic Line. Earth Planet Sci Lett 335–336:80–87

    Google Scholar 

  • Miller CF, Meschter McDowell S, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6):529–532

    Article  Google Scholar 

  • Montigny R, Ngounouno I, Déruelle B (2004) Âges K-Ar des roches magmatiques du fossé de Garoua (Cameroun): leur place dans le cadre de la «Ligne du Cameroun». C R Geosci 336:1463–1471

    Article  Google Scholar 

  • Moreau C, Regnoult T, Deruelle B, Robineau B (1987) A new tectonic model for the Cameroon Line, central Africa. Tectonophysics 139:317–334

    Article  Google Scholar 

  • Neiva AMR (1984) Geochemistry of tin-bearing granitic rocks. Chem Geol 43:241–256

    Article  Google Scholar 

  • Ngako V, Affaton P, Nnange JM, Njanko T (2003) Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. J Afr Earth Sci 36:207–214

    Article  Google Scholar 

  • Nguene FR (1982) Geology and geochemistry of the Mayo-Darle tin deposit. West-Central Cameroon, Central Africa, pp 35–58

    Google Scholar 

  • Nguiessi Tchankam C, Nzenti JP, Nkonguin Nsifa E, Tempier P, Tchoua FM (1997) Les granitoides calco-alcalins syncisaillement de Bandja dans la chaîne panafricaine nord-quatoriale au Cameroun. C R Acad Sci 325:95–101

    Google Scholar 

  • Njome MS, de Wit MJ (2014) The Cameroon Line: analysis of an intraplate magmatic province transecting both oceanic and continental lithospheres: constraints, controversies and models. Earth Sci Rev 139:168–194

    Article  Google Scholar 

  • Njonfang E, Nono A, Kamgang P, Ngako V, Tchoua F (2011) Cameroon Line alkaline magmatism (central Africa): a reappraisal. In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and evolution of the African Lithosphere, vol 478. Special Papers Geological Society of America, pp 173–191

  • Njonfang E, Tchuente Tchoneng G, Cozzupoli D, Lucci F (2013) Petrogenesis of the Sabongari alkaline complex, Cameroon line (central Africa): preliminary petrological and geochemical constraints. J Afr Earth Sci 83:25–54

    Article  Google Scholar 

  • Nzenti JP, Barbey P, Bertrand JML, Macaudière J (1994) La chaîne panafricaine au Cameroun: cherchons suture et modèle. In S.G.F. édit., 15e réunion des Sciences de la Terre, Nancy, France, p 99

  • Nzenti JP, Kapajika B, Wörner G, Lubala RT (2006) Synkinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. J Afr Earth Sci 45:74–86

    Article  Google Scholar 

  • Ogunleye PO, Garba I, Ike EC (2006) Factors contributing to enrichment and crystallization of niobium in pyrochlore in the Kaffo albite arfvedsonite granite, Ririwai complex, Younger Granites province of Nigeria. J Afr Earth Sci 44:372–382. https://doi.org/10.1016/j.jafrearsci.2005.12.006

    Article  Google Scholar 

  • Palache C, Berman H, Frondel C (1944) The system of mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837–1892, Volume I—elements, sulfides, sulfosalts, oxides. Wiley, New York

    Google Scholar 

  • Pearce JA, Harris NW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Penhallurick RD (1986) Tin in antiquity. The Institute of Metals, London, p 271

    Google Scholar 

  • Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

    Article  Google Scholar 

  • Reusch AM, Nyblade AA, Tibi R, Wiens DA, Shore PJ, Bekoa A, Nnange JM (2011) Mantle transition zone thickness beneath Cameroon: evidence for an upper mantle origin for the Cameroon Volcanic Line. Geophys J Intern 187:1146–1150

    Article  Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calcalkaline, I-type granitoids. Geology 21:825–828

    Article  Google Scholar 

  • Romer RL, Kröner U (2016) Phanerozoic tin and tungsten mineralization—tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31:60–95. https://doi.org/10.1016/j.gr.2015.11.002

    Article  Google Scholar 

  • Sakoma EM, Martin RF (2011) Frozen disequilibrium in the feldspar mineralogy of the Kwandonkaya anorogenic complex, Nigerian A-type Granite Province. Can Mineral 49:967–982. https://doi.org/10.3749/canmin.49.4.967

    Article  Google Scholar 

  • Shand SJ (1943) Eruptive rocks: their genesis, composition, classification, and their relation to ore-deposits, with a chapter on meteorites. Wiley, New York, p 350

    Google Scholar 

  • Shellnutt JG, Zhou MF (2007) Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chem Geol 243:286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022

    Article  Google Scholar 

  • Siegel K, Vasyukova OV, Williams-Jones AE (2018) Magmatic evolution and controlson rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador. Lithos 308–309:34–52

    Article  Google Scholar 

  • Soloviev SG, Kryazhev S, Dvurechenskaya S (2019) Geology, igneous geochemistry, mineralization, and fluid inclusion characteristics of the Kougarok tin-tantalum-lithium prospect. Mineralium Deposita, Seward Peninsula. https://doi.org/10.1007/s00126-019-00883-7

    Book  Google Scholar 

  • Spitz G, Darling R (1978) Major and minor elements lithochemical anomalies surrounding the Louvern copper deposits, Vald’Or, Quebec. Can J Earth Sci 15:1161–1169

    Article  Google Scholar 

  • Suh CE, Sparks RSJ, Fitton JG, Ayonghe SN, Annen C, Nana R, Luckman A (2003) The 1999 and 2000 eruptions of Mount Cameroon: eruption behaviour and petrochemistry of lava. Bull Volcanol 65:267–287

    Article  Google Scholar 

  • Sun XM, Tang Q, Sun WD, Xu L, Zhai W, Liang JL, Liang YH, Shen K, Zhang ZM, Zhou B, Wang FY (2007) Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochim et Cosmochim Acta 71:2896–2905

    Article  Google Scholar 

  • Taylor SR (1965) The application of trace element data to problems in petrology. Phys Chem Earth 6:133–213

    Article  Google Scholar 

  • Taylor RG (1979) Geology of tin deposits [with chaps. by Cuff, C.]. Developments in economic geology series, no. 11. Elsevier, Amsterdam, 543 p

  • Tcheumenak Kouemo J, Njanko T, Kwekam M, Naba S, Bella Nke BE, Yakeu Sandjo AF, Fozing EM, Njonfang E (2014) Kinematic evolution of the Fondjomekwet-Fotouni shear zone: Implication for emplacement of the Fomopéa and Bandja plutons. J Afr Earth Sci 99:261–275

    Article  Google Scholar 

  • Terakado Y, Masuda A (1988) Trace element variations in acidic rocks from the inner zone of southwest Japan. Chem Geol 67:227–241

    Article  Google Scholar 

  • Tischendorf G (1989) Silicic magmatism and metallogenesis of the Erzgebirge (compiled by G. Tischendorf). Veröffentlichungen Zentralinstitut Der Physik Der Erde (potsdam) 107:1–316

    Google Scholar 

  • Tokam APK, Tabod CT, Nyblade AA, Julia J, Wiens DA, Pasyanos ME (2010) Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophys J Int 183:1061–1076

    Article  Google Scholar 

  • Wang RC, Xie L, Chen J, Yu A, Wang L, Lu J, Zhu J (2013) Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China)—constraints on processes of tin mineralization in oxidized granites. J Asian Earth Sci 74:361–372. https://doi.org/10.1016/j.jseaes.2012.11.029

    Article  Google Scholar 

  • Watson EB (1987) The role of accessory minerals in granitoid geochemistry. In: Hutton conference of the origin of granites. Univ. Edinburgh, pp 209–213

  • Watson EB, Green TH (1982) Apatite liquid-partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Watson EB, Harrison TM (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Phys Earth Planet Inter 35:19–30

    Article  Google Scholar 

  • Whalen JB, Hildebrand RS (2019) Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 348–349:105179. https://doi.org/10.1016/j.lithos.2019.105179

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419. https://doi.org/10.1007/BF00402202

    Article  Google Scholar 

  • Wokwenmendam P, Nguet NE, Moudi A, Cozzpoli D, Tchoua FM (2016) Données nouvelles sur le complexe alcalin de Nana: pétrologie et géochimie des laves associées (Plaine Tikar, Ouest Cameroun). Syllabus Rev 6:13–32

    Google Scholar 

  • Wright JH, Kwak TAP (1989) Tin-bearing greisens of Mount Bischoff, nortwestern Tasmania, Australia. Econ Geol 89(3):551–574

    Article  Google Scholar 

Download references

Acknowledgements

This study is a part of the second author Msc thesis research work at the University of Buea. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-proft sectors. We gratefully acknowledge the editors for the handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndema Mbongué Jean Lavenir.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavenir, N.M.J., Fuh, N.E. & Junior, E.E.M. Petrogenesis of the Mayo-Darley tin formations, anorogenic complex of the Cameroon Line: implication for tin deposit. Acta Geochim 42, 704–725 (2023). https://doi.org/10.1007/s11631-023-00615-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00615-9

Keywords

Navigation