Skip to main content
Log in

U–Pb LA-ICP-MS geochronology of polygenetic zircons from Beshta and Kamenistaya intrusions (the Greater Caucasus)

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Beshta–Kamenistaya intrusions are located in the Main Range structural zone of the Greater Caucasus. They are composed of tonalitic gneisses that genetically resemble granites of the tholeiitic series of the ophiolitic complexes. The Beshta–Kamenistaya orthogneisses and associated rocks of the nappes differ markedly from those of the Main Range zone. All of them were overthrust to the Main Range zone during the Bretonian orogeny. The age of their protolith and the metamorphism are still not defined. Using the zircon U–Pb LA-ICP-MS dating two age populations of zircons have been distinguished in the rocks of the Beshta–Kamenistaya intrusions. The age of the main population of zircons from orthogneisses is 426–300 Ma. Several age groups can be distinguished in this population. The main group yielded a Concordia age of 386.9 ± 1.4 Ma. There are also smaller peaks at 409–405, 375–373, and 351 Ma. The oldest ages (426–395 Ma) were detected in the core parts of the complex crystals. We assume that the crystallization of the parental for orthogneisses rocks (tonalities) took place at 410–395 Ma, whereas the Concordia age of 386.9 ± 1.4 Ma and a peak at 375–373 Ma correspond to the metamorphic event. The whole metamorphic cycle, including progressive and regressive stages, occurred between 395 and 370 Ma. Zircons, dated in the Beshta–Kamenistaya intrusion at 350 Ma and younger, correspond to the Late Variscan orogeny. Zircons dated 3102–2769 Ma represent xenocrysts captured by the melts during their formation from the ancient rocks in the crystalline basement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Mineral symbols are given as per Whitney and Evans (2010). Index numbers of dark-colored minerals indicate their magnesium numbers [Mg/(Mg + Fe2+)]; Index numbers of Pl are the content of the anorthite molecule (mass%).

References

  • Adamia Sh (1984) Pre-Alpine basement of the Caucasus—composition, structure, formation. In: Otkhmezuri Z (ed) Tectonics and metallogeny of the Caucasus. Metsniereba, Tbilisi, pp 1–104 (in Russian)

  • Baranov G, Grekov I (1982) Geodynamic model of the Greater Caucasus. In: Muratov M (ed) Problems of the geodynamics of the Caucasus. Nauka, Moscow, pp 51–59 (in Russian)

    Google Scholar 

  • Baranov G, Kropachov S (1976) Stratigraphy, magmatism and tectonics of the Greater Caucasus Precambrian and Paleozoic stages. Nedra, Moscow

    Google Scholar 

  • Belousova E, Griffin WL, O’Reilly SY, Fisher NL (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622. https://doi.org/10.1007/s00410-002-0364-7

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implication for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57. https://doi.org/10.1016/j.epsl.2008.06.010

    Article  Google Scholar 

  • Coleman R (1977) Ophiolites. Springer, Berlin

    Book  Google Scholar 

  • Duchesne JC, Shumlyanskyy L, Charlier B (2006) The Fedorivka layered intrusion (Korosten pluton, Ukraine): an example of highly differentiated ferrobasaltic evolution. Lithos 89:353–376

    Article  Google Scholar 

  • Dymshits A, Sharygin I, Liu Z, Korolev N, Malkovets V, Alifirova T, Yakovlev I, Xu YG (2020) Oxidation state of the lithospheric mantle beneath Komsomolskaya–Magnitnaya Kimberlite pipe, Upper Muna Field, Siberian Craton. Minerals 10:740. https://doi.org/10.3390/min10090740

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322

    Article  Google Scholar 

  • Gamkrelidze I (1980) On the study of the tectonic nappes of the Caucasus. Soobshenya Acad Sci GSSR 98(2):369–372 (in Russian)

    Google Scholar 

  • Gamkrelidze I, Shengelia D (2005) Precambrian-paleozoic regional metamorphism, granitoid magmatism and geodynamics of the Caucasus. Nauchny Mir, Moscow

    Google Scholar 

  • Gamkrelidze I, Shengelia D, Chichinadze G (1996) Makera nappe in the crystalline core of the Greater Caucasus and its geological significance. Bull Georg Acad Sci 154(1):84–89 (in Russian)

    Google Scholar 

  • Gamkrelidze I, Shengelia D, Chichinadze G, Yuan HL, Okrostsvaridze A, Beridze G, Vardanashvili K (2020) U–Pb LA–ICP–MS dating of zoned zircons from the Greater Caucasus pre-Alpine crystalline basement: evidence for Cadomian to Late Variscan evolution. Geologica Carpatica 71(3):249–263

    Article  Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646. https://doi.org/10.1130/G23603A.1

    Article  Google Scholar 

  • Jackson S, Pearson N, Griffin W, Belousova E (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Javakhishvili I, Shengelia D, Shumlyanskyy L, Tsutsunava T, Chichinadze G, Beridze G (2021) Metamorphism of the Dizi Series rocks (the Greater Caucasus): petrography, mineralogy and evolution of metamorphic assemblages. Baltica 34(2):185–202. https://doi.org/10.5200/baltica.2021.2.5

    Article  Google Scholar 

  • Korikovsky S, Shengelia D, Somin M (1991) Model of pre-Alpine zoned metamorphism of the Greater Caucasus. In: Korikovsky SP (ed) Petrology of the metamorphic complexes of the Greater Caucasus. Nauka, Moscow, pp 216–222 (in Russian)

    Google Scholar 

  • Loucks RR, Fiorentini ML, Henríquez GJ (2020) New magmatic oxybarometer using trace elements in zircon. J Petrol 61:egaa034. https://doi.org/10.1093/petrology/egaa034

    Article  Google Scholar 

  • Patchett P, Tatsumoto M (1980) Lu-Hf total-rock isochron for the eucrite meteorites. Nature 288:571. https://doi.org/10.1038/288571a0

    Article  Google Scholar 

  • Potapenko Yu, Stukalina G (1971) First finding of fossils in the Main Caucasian Range metamorphic complex. Doklady Acad Sci 198:1161–1162

    Google Scholar 

  • Shengelia MD (1987) Regularities of P–T parameters of the Lashtrak tectonic slice regional metamorphism on the basis of its microprobe analysis. Bull Acad Sci GSSR 126(3):585–588

    Google Scholar 

  • Shengelia MD, Hatar L (1989) Evolution of regional metamorphism of the Sophian uplift (the Greater Caucasus). Geologica Carpatica 38(4):457–473

    Google Scholar 

  • Shengelia D, Ketskhoveli D (1982) Regional metamorphism of low and moderate pressures in Abkhazia. Tr GIN AN GSSR 78:1–206 (in Russian)

    Google Scholar 

  • Shengelia D, Chichinadze G, Ketskhoveli D, Mgaloblishvili I, Kakhadze R, Poporadze N (1984) New data on the Atsgara nappe in the Northern Caucasus. Doklady Acad Sci USSR 274(6):1450–1453

    Google Scholar 

  • Shengelia D, Chichinadze G, Ketskhoveli D, Mgaloblishvili I, Kakhadze R, Poporadze N, Tsutsunava T, Shengelia MD (1986) Petrology of Metamorphites of the Atsgara Nappe in the Northern Caucasus. Izvestya Acad Sci USSR Geol Ser 5:17–27 (in Russian)

    Google Scholar 

  • Shengelia D, Chichinadze G, Okrostsvaridze A (1989) New data on plagiogranite gneisses of the Beshta and mount Kamenistaya (upper Abkahzia). Bull Acad Sci GSSR 135(2):393–396 (in Russian)

    Google Scholar 

  • Shengelia D, Chichinadze G, Tsutsunava T, Beridze G, Javakhishvili I (2020) On the regional metamorphism of pre-Variscan orthogneisses of Beshta and Mount Kamenistaia inlier. Janelidze Inst Geol Proc 132:26–36 (in Georgian)

    Google Scholar 

  • Shumlianska LO, Burmin VY (2021) Earthquake focal mechanisms and geodynamic modeling of the Nothern and Central Caucasus. Probl Eng Seismol 48(4):89–113. https://doi.org/10.21455/VIS2021.4-5

    Article  Google Scholar 

  • Shumlyanskyy LV, Kamenetsky VS, Tsymbal SM, Wilde SA, Nemchin AA, Ernst RE, Shumlianska LO (2021) Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite melts. Lithos 406–407:106528. https://doi.org/10.1016/j.lithos.2021.106528

    Article  Google Scholar 

  • Sláma I, Košler J, Condon D, Crowley J, Gerdes A, Hanchar J, Horstwood M, Morris G, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M, Whitehouse M (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Söderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324. https://doi.org/10.1016/S0012-821X(04)00012-3

    Article  Google Scholar 

  • Somin ML (1971) Pre-Jurassic basement of the Main Range of the Southern Slope of the Greater Caucasus. Nauka, Moscow

    Google Scholar 

  • Somin ML (2011) Pre-Jurassic basement of the Greater Caucasus: a brief overview. Turkish J Earth Sci 20:545–610

    Google Scholar 

  • Stern R, Bodorkos S, Kamo S, Hickman A, Corfu F (2009) Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand Geoanal Res 33:145–168

    Article  Google Scholar 

  • Turner S, Wilde S, Wörner G, Schaefer B, Lai YJ (2020) An Andesitic source for Jack Hills Zircon supports onset of plate tectonics in the Hadean. Nat Commun 11:1241. https://doi.org/10.1038/s41467-020-14857-1

    Article  Google Scholar 

  • Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

    Article  Google Scholar 

  • Zaridze G, Schengelia D (1977) Metamorphismus, granitoidbilding und plattektonic in Grossen Kaukasus. Acta Geologica Acad Sci Hungaricae 21(1–3):99–103

    Google Scholar 

  • Zaridze G, Schengelia D (1978) Uber Kritallisations differentiation und metasomatische granitization bei der bilding der granit-metamorphit-schicht. Zeitschrift Fur Geologische Wissenschaften Berlin 8–9:985–994

    Google Scholar 

  • Zaridze G, Shengelia D (1978) Hercynian magmatism and metamorphism of the Great Caucasus in the tight of plate tectonics. Bull Soc Geol France VXX 3:355–359

    Article  Google Scholar 

Download references

Acknowledgements

Dedicated to the heroic struggle of the Ukrainian people against Russian aggression. We acknowledge the Curtin Research Office for providing support to LS. The paper has benefitted from constructive comments from Prof. Dr. Chun-Ming Wu (UCAS, University of Chinese Academy of Sciences) and ananonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Tsutsunava.

Ethics declarations

Conflict of interest

All the authors declare that they have no significant competing financial, professional or personal interests that might have influenced the performance of the work described in the manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shengelia, D., Shumlyanskyy, L., Chichinadze, G. et al. U–Pb LA-ICP-MS geochronology of polygenetic zircons from Beshta and Kamenistaya intrusions (the Greater Caucasus). Acta Geochim 41, 1019–1029 (2022). https://doi.org/10.1007/s11631-022-00558-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00558-7

Keywords

Navigation