Skip to main content
Log in

Petrogenesis, LA-ICP-MS zircon U-Pb geochronology and geodynamic implications of the Kribi metavolcanic rocks, Nyong Group, Congo craton

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Metavolcanic rocks are well-exposed in the Kribi area within the Nyong Group, Congo craton, but their origin, age, and tectonic significance are poorly known. Here we report integrated field mapping and petrography, geochemistry, and LA-ICP-MS zircon U-Pb ages of these metavolcanic rocks to constrain their petrogenesis and geodynamic implications. The studied rocks consist of mafic granulite, garnet-amphibole gneiss, and garnet-biotite gneiss, and occur interbanded with sharp contact and intruded by syenite dyke. These metavolcanic rocks are classified as MORB-like tholeiitic to calc-alkaline basalts, basaltic andesite, and rhyodacite rocks with within-plate setting geochemical signatures. The metabasite rocks (basalt to basaltic andesite protolith) are likely the equivalent of a spinel peridotite product representing ~ 2–5 % partial melting of metasomatized mantle source, while the metarhyodacite rocks are derived from the fractional crystallization of the same parental magma. Zircon U-Pb data revealed that the rhyodacite rocks initially formed at 2671 ± 51 Ma and underwent later metamorphism at 2065 ± 55 Ma. The Neoarchean protolith age is comparable to the ca. 2628 Ma tholeiitic magmatism and ca. 2666 Ma high-K granites, suggesting bimodal Neoarchean magmatic event within the Ntem Complex, while the metamorphic ages fall within the ca. 2100–2000 Ma high-grade tectono-metamorphic event attributed to Eburnean/Trans-Amazonian orogeny. At the regional scale, metavolcanic rocks with similar origins and ages are documented in the São Francisco Craton in Brazil, suggesting comparable geodynamic evolution on both sides of the south Atlantic during the Paleoproterozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida FFM (1977) O cráton do São Francisco. Revista Brasileira de Geociências 7:349–364

    Article  Google Scholar 

  • Álvaro JJ, Pouclet A, Ezzouhairi H, Souleymani A, Bouougrid E, Imaze H, Fekkak AG (2014) Early Neoproterozoic rift-related magmatism in the Anti-Atlas margin of the West African craton, Morocco. Precambrian Res 255:433–442

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Barbosa JS, Barbosa RG (2017) The Paleoproterozoic eastern bahia orogenic domain. In: Heilbron M, Cordani UG, Alkmim FF (Eds) São Francisco Craton, Eastern Brazil. Tectonic Genealogy of a Miniature Continent. Springer, pp 57–69

  • Barbosa JSF, Sabaté P (2004) Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Res 133(1–2):1–27. https://doi.org/10.1016/j.precamres.2004.03.001

    Article  Google Scholar 

  • Belousova E, Griffin W, O’Reilly SY, Fisher N (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622

    Article  Google Scholar 

  • Beuchert MJ, Podladchikov YY, Simon NSC, Rüpke LH (2010) Modeling of craton stability using a viscoelastic rheology. J Phys Res 115:B11413

    Article  Google Scholar 

  • Blein O, Lapierre H, Schweickert RA (2001) A Permian island-arc with a continental basement: the Black Dyke Formation Nevada, North American Cordillera. Chem Geol 175:543–566. https://doi.org/10.1016/S0009-2541(00)00357-0

    Article  Google Scholar 

  • Bouyo Houketchang M, Penaye J, Mouri H, Toteu SF (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. J Afr Earth Sc 149:215–234

    Article  Google Scholar 

  • Chombong NN, Suh CE, Lehmann B, Vishiti A, Ilouga DC, Shemang EM, Tantoh BS, Kedia AC (2017) Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Appl Earth Sci 126:129–145

    Article  Google Scholar 

  • Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504

    Article  Google Scholar 

  • Currie C, Van Wijk J (2016) How craton margins are preserved: Insights from geodynamic models. J Geodyn 100:144–158

    Article  Google Scholar 

  • Dai LQ, Zhao ZF, Zheng YF, Li Q, Yang Y, Dai M (2011) Zircon Hf–O isotope evidence for crust–mantle interaction during continental deep subduction. Earth Planet Sci Lett 308:229–244

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • De Paula Garcia PM, Carrilho ELuizV, Ribeiro LVC, Misi BP, Da Silva A, Correia SJH, Rios D (2021) Geology, petrogenesis, and geochronology of the Rio Salitre Complex: implications for the Paleoproterozoic evolution of the northern São Francisco Craton, Brazil. J S Am Earth Sci 107:103112

    Article  Google Scholar 

  • Djoukouo Soh AP, Ganno S, Zhang LC, Soh Tamehe L, Wang CL, Peng ZD, Tong XX, Nzenti JP (2021) Geochemical and geochronological constraints on the origin of the Bibole banded iron formations, northwestern Congo Craton, Cameroon: implications for their depositional age and tectonic environment. Geol Mag 158:2245–2263. https://doi.org/10.1017/S0016756821000765

    Article  Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2008) Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100:174–209

    Article  Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the Subduction Factory. AGU, Washington, DC, pp 23–45

    Chapter  Google Scholar 

  • Fahmi H, Yanuardi SN, Cendi DPD, Anastasia DT (2019) Geology and petrogenesis of igneous rocks from Batur Paleovolcano, Gunungkidul, Yogyakarta: evidence from their textures, mineralogy, and major elements geochemistry. J Appl Geol 4(1):32–42

    Article  Google Scholar 

  • Feybesse JL, Johan V, Maurizot P, Abessolo A (1986) Mise en évidence d’une nappe synmétamorphe d’âge Eburnéen dans la partie NW du craton Zairois (SW Cameroun). Publication occasionnelle-Centre international pour la formation et les échanges géologiques, pp 105–111

  • Feybesse JL, Johan V, Triboulet C, Guerrot C, Mayaga-Mikolo F, Bouchot V, Eko N J (1998) The West Central African belt: a model of 2.5-2.0 Ga accretion and two-phase orogenic evolution. Precambrian Res 87:161–216

    Article  Google Scholar 

  • Fuanya C, Temidayo BA, Kankeu B, Fouateu YR, Tangko TE, Yetedje NF (2019) Geochemical characteristics and petrogenesis of basic rocks in the Ako’ozam-Njabilobe area, Southwestern Cameroon: implications for Au genesis. SN Appl Sci 1:904

    Article  Google Scholar 

  • Ganno S, Moudioh C, Nchare NA, Nono K, Nzenti GD, J.P (2015) Geochemical fingerprint and iron ore potential of the siliceous itabirite from Palaeoproterozoic Nyong Series, Zambi area, southwestern Cameroon. Resour Geol 66(1):71–80

    Article  Google Scholar 

  • Ganno S, Njiosseu Tanko EL, Nono K, Djoukouo Soh GD, Moudioh A, Ngnotué C, Nzenti T, J.P (2017) A mixed seawater and hydrothermal origin of Superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong Series, Southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geo Rev 80:860–875

    Article  Google Scholar 

  • Ganno S, Tsozue D, Nono K, Tchouatcha GD, Ngnotue MS, Takam T, Nzenti GR, J. P (2018) Geochemical constraints on the origin of banded iron formation-hosted iron ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi area, southern Cameroon. Resour Geol 68(3):287–302

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. WW Norton and Company Inc., New York

    Google Scholar 

  • Geng H, Sun M, Yuan C, Zhao G, Xiao W (2011) Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications. J Asian Earth Sci 42:854–866

    Article  Google Scholar 

  • Gerya T (2014) Precambrian geodynamics: concepts and models. Gondwana Res 25:442–463

    Article  Google Scholar 

  • Gibson HL, Watkinson DH, Comba CDA (1983) Silicification; hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Econ Geol 78:954–971

    Article  Google Scholar 

  • Green TH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P. T Chem Geol 54:185–201

    Article  Google Scholar 

  • Heilbron M, Cordani UG, Alkmim FF (eds) (2017) Sao Francisco Craton, eastern Brazil: Tectonic genealogy of a miniature continent. Springer, p 331

  • Hoffmann JE, Münker C, Polat A, KönSchalteggerig S, Mezger K, Rosing MT (2010) Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern west Greenland. Geochim Cosmochim Acta 74:7236–7260

    Article  Google Scholar 

  • Hou KJ, Li YH, Tian YY (2009) In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits 28(4):481–492 (in Chinese with English abstract)

    Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (2011) A guide to the chemical classification of the Common volcanic rocks. Can J Earth Sci 8(5):158. https://doi.org/10.1139/e71-055

    Article  Google Scholar 

  • Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel. Ger J Petrol 47(8):1637–1671

    Article  Google Scholar 

  • Kankeu B, Greiling RO, Nzenti JP, Ganno S, Danguene PYE, Bassahak J, Hell J (2018) Contrasting Pan-African structural styles at the NW margin of the Congo Shield in Cameroon. J Afr Earth Sc 146:28–47

    Article  Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92:8089–8115

    Article  Google Scholar 

  • Kwamou WMM, Nono K, Nkouathio GD, Kenne DGA, P (2021) Petrogenesis and U-Pb zircon dating of amphibolite in the Mewengo iron deposit, Nyong series, Cameroon: fingerprints of iron depositional geotectonic setting. Arab J Geosci 14:872

    Article  Google Scholar 

  • Lasserre M, Soba D (1976) Age libérien des granodiorites et des gneiss à pyroxènes du Cameroun méridional. Bull du BRGM 2:17–32

    Google Scholar 

  • Leal VLS, Kuchenbecker Barbuena MD, Queiroga G (2021) Geochemistry and U-Pb zircon ages of the metamafic-ultramafic rocks of the Riacho dos Machados metavolcanosedimentary sequence: evidence of a late Rhyacian back-arc basin during the assembly of São Francisco-Congo paleocontinent. J Pre-proof 2:1068

    Google Scholar 

  • Ledru P, Eko Ndong JE, Johan V, Prian JP, Coste B, Haccard D (1989) Structural and metamorphic evolution of the Gabon orogenic belt: collision tectonics in the lower Proterozoic? Precambrian Res 44:227–241

    Article  Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milési JP, Tchameni R, Nsifa EN, Fanning M, Deloule E (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean–Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sc 44:413–427

    Article  Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Res 304:1–11

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot 3.00: a geochronological toolkit for Microsoft excel, Berkeley (CA), Berkeley Geochronology Center Special Publication, No. 4, p 70

  • MacLean WH, Barrett TJ (1993) Lithochemical techniques using immobile elements. J Geochem Explor 48:109–133

    Article  Google Scholar 

  • Maurizot P, Abessolo A, Feybesse JL, Lecomte PJ (1986) Etude de prospection minière du Sud-Ouest Cameroun: Synthèse des travaux de 1978 à 1985. Rapport BRGM 85, CMR 066

  • Middelburg JJ, Van der Weijden CH, Woittiez JR (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Moreno JA, Baldim MR, Semprich J, Oliveira EP, Verma SK, Teixeira W (2017) Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern São Francisco Craton, Brazil. Precambrian Res 294:322–343

    Article  Google Scholar 

  • Moudioh C, Tamehe LS, Ganno S, Nzepang Tankwa M, Soares B, Ghosh M, Kankeu R, Nzenti BJP (2020) Tectonic setting of the Bipindi greenstone belt, northwest Congo craton, Cameroon: implications on BIF deposition. J Afr Earth Sc 171:103971

    Article  Google Scholar 

  • Ndema Mbongue JL, Ngnotue T, Nlend N, Nzenti CD, Suh JPC, E (2014) Origin and evolution of the formation of the Cameroon Nyong Series in the western border of the Congo Craton. J Geosci Geomatics 2:62–75

    Google Scholar 

  • Nedelec A, Minyem D, Barbey P (1993) High-P/high-T anatexis of Archaean tonalitic grey gneisses: the Eseka migmatites, Cameroon. Precambrian Res 62:191–205

    Article  Google Scholar 

  • Nedelec A, Nsifa EN, Martin H (1990) Major and trace element geochemistry of the Archaean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution. Precambrian Res 47:35–50

    Article  Google Scholar 

  • Neves SP, Bruguier O, Vauchez A, Bosch D, Silva JMR, Mariano G (2006) Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Res 149:197–216

    Article  Google Scholar 

  • Nga Essomba TP, Ganno S, Tanko Njiosseu EL, Mbongue N, Woguia JLK, Tamehe BSoh, Wambo LTakodjou, Nzenti JD, J. P (2020) Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon. Acta Geochim 39:404–422

    Article  Google Scholar 

  • Niu Y, O’Hara MJ (2008) Global correlations of Ocean ridge Basalt chemistry with axial depth: a new perspective. J Petrol 49:633–664

    Article  Google Scholar 

  • Niu Y, Regelous M, Wendt IJ, Batiza R, O’Hara MJ (2002) Geochemistry of near-EPR seamounts: importance of source vs process and the origin of enriched mantle component. Earth Planet Sci Lett 199:327–345

    Article  Google Scholar 

  • Nkoumbou C, Barbey P, Yonta-Ngouné C, Paquette JL, Villiéras F (2015) Pre-collisional geodynamic context of the southern margin of the Pan-African Fold Belt in Cameroon. J Afr Earth Sc 99:245–260

    Article  Google Scholar 

  • Nsifa Nkonguin E, Tchameni R, Nédélec A, Siqueira R, Pouclet A, Bascou J (2013) Structure and petrology of Pan-African nepheline syenites from the South West Cameroon; Implications for their emplacement mode, petrogenesis and geodynamic significance. J Afr Earth Sc 87:44–58

    Article  Google Scholar 

  • Nzepang Tankwa M, Ganno S, Okunlola OA, Njiosseu T, Tamehe ELS, Woguia LKamguia, Mbita BMotto, Nzenti JP (2021) Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology. Int Geol Rev 63(14):1737–1757

    Article  Google Scholar 

  • Owona S, Ondoa JM, Tichomirowa M, Ekodeck GE (2020a) The petrostructural characteristics and 207Pb/206Pb zircon data from the Ngomedzap-Akongo area (Nyong complex, SW-Cameroon). J Geosci 65:201–219

    Article  Google Scholar 

  • Owona S, Ratschbacher L, Azfal MG, Nsangou Ngapna M, Mvondo Ondoa J, Ekodeck GE (2020) New U-Pb zircon ages of Nyong Complex meta-plutonites: implications for the Eburnean/Trans-Amazonian Orogeny in southwestern Cameroon (Central Africa). Geol J 56:1741–1755

    Article  Google Scholar 

  • Owona S, Ratschbacher L, Nsangou Ngapna M, Gulzar AM, Ondoa M, Ekodeck J, G. E (2021a) How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology. Precambrian Res 359:106220

    Article  Google Scholar 

  • Owona S, Ratschbacher L, Nsangou Ngapna M, Gulzar AM, Ondoa M, Ekodeck J, G. E (2021b) Reply to comment on “How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology’ by Mvondo and Bineli Betsi”. Precambrian Res 366:106418

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Science Letter 19:290–300

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, Chidester, pp 525–548

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic ARC magmas. Annual Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounté J, Ganwa A, Minyem D, Nsifa EN (2004) The 2,1Ga West Central African Belt in Cameroon: extension and evolution. J Afr Earth Sc 39:159–164

    Article  Google Scholar 

  • Penaye J, Toteu SF, Michard A, Van Schmu WR, Nzenti JP (1993) U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé serie, Cameroon: reinterpretation of granulitic rock as the suture of the collision in the Centrafricain belt. Rep Sci Acad 317:789–794

    Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Polat A, Regelous M, Hofmann AW, Appel PWU (2000) Contrasting geochemistry in the 3.7–3.8 Ga pillow basalt rims and cores, Isua greenstone belt, Greenland: implications for early Archean sea-floor alteration processes. AGU EOS Trans. 81:F1256

    Google Scholar 

  • Pouclet A, Tchameni R, Mezger K, Vidal M, Nsifa EN, Shang CK, Penaye J (2007) Archaean crustal accretion at the northern border of the Congo craton (South Cameroon), The charnockite-TTG link. Bull Geol Soc France 178:331–342

    Article  Google Scholar 

  • Rooney TO (2010) Geochemical evidence of lithospheric thinning in the southern Main Ethiopian Rift. Lithos 117:33–48

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group UK Ltd., Longman, p 352

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation ofmonazite in high-grademetamorphism: conventional and in-situ UePb isotope, cathodolumi- nescence and microchemical evidence. Contrib minéralogy Petrol 134:186e201

    Google Scholar 

  • Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642

    Article  Google Scholar 

  • Soh Tamehe L, Wei C, Ganno S, Rosiere CA, Nzenti JP, Ebotehouna CG, Lu G (2021) Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: Insights from isotopic, geochemical and geochronological studies of drillcore sample. Geosci Front 12:549–572

    Article  Google Scholar 

  • Spreafico RR, Barbosa F, Barbosa JS, Vitória de Moraes NS, A. M (2019) Tectonic evolution of the Neoarchean Mundo Novo greenstone belt, eastern São Francisco Craton, NE Brazil: Petrology, U-Pb geochronology, and Nd and Sr isotopic constraints. J S Am Earth Sci 95:102296. https://doi.org/10.1016/j.jsames.2019.102296

    Article  Google Scholar 

  • Suh CE, Cabral A, Shemang EM, Mbinkar L, Mboudou GGM (2008) Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa. Explor Mineral Geol 17:197–207

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Publ 42:313–345

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Taylor SR, Rudnick RL, McLennan SM, Eriksson KA (1986) Rare earth element patterns in Archean high-grade metasediments and their tectonic significance. Geochim Cosmochim Acta 50:2267–2279

    Article  Google Scholar 

  • Tchameni R, Mezger K, Nsifa EN (1995) Archaean and early Proterozoic evolution of the Congo Craton (Southern Cameroon). EUG VIII Terra Abstracts 7:102

    Google Scholar 

  • Tchameni R, Mezger K, Nsifa NE, Pouclet A (2000) Late Archean crustal evolution in the Congo Craton: evidence from the K-rich granitoids of the Ntem Complex, Southern Cameroon. J Afr Earth Sc 30:133–147

    Article  Google Scholar 

  • Teutsong T, Temga JP, Enyegue AA, Feuwo NN, Bitom D (2020) Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon. Acta Geochim 40:163–175

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobé JB (1994) U-Pb and Sm/N evidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Res 67:321–347

    Article  Google Scholar 

  • Toteu SF, Yongue RF, Penaye J, Tchakounte J, Seme Mouangue AC, Van Schmus WR, Deloule E, Stendal H (2006) U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. J Afr Earth Sc 44:479–493

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Werner F, Erlenkeuser H, Grafenstein UV, McLean S, Sarnthein M, Schauer U, Unsold G, Walger E, Wittstock R (1987) Sedimentary records of benthic processes. In: Seawater-sediment interactions in Coastal Waters. American Geophysical Union (AGU), pp 162–262

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Springer, London, pp 245–285

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Wood DA, Joron JL, Treuil M, Norry M, Tarney J (1979) Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib Miner Petrol 70:319–339

    Article  Google Scholar 

  • Wu Y, Zheng Y (2004) Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull 49:1554–1569

    Article  Google Scholar 

  • Xia Z, Du W, Xia M, Jiang C (2018) Crustal contamination and magmatic evolution of the Bijiashan basic–ultrabasic intrusion belt in the Beishan Terrane, northeastern Tarim Craton (NW China). Geol J 2:1–14

    Google Scholar 

  • Zhang DY, Zhang ZC, Encarnación J, Xue CJ, Duan SG, Zhao ZD, Liu JL (2012a) Petrogenesis of the Kekesai composite porphyry intrusion, western Tianshan, NW China, Implications for metallogenesis, tectonic evolution and continental growth during Late Paleozoic time. In: Lithos, pp 146–147

  • Zhang ZC, Kang JL, Kusky T, Santosh M, Huang H, Zhang DY, Zhu J (2012) Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China, implications for the onset of Rodinia supercontinent breakup. Precambrian Res 220–221:158–176

    Article  Google Scholar 

  • Zhang ZC, Mahoney JJ, Mao JW, Wang FS (2006) Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. J Petrol 47(10):1997–2019

    Article  Google Scholar 

  • Zhou MF, Zhao JH, Jiang CY, Gao JF, Wang W, Yang SH (2009) OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos 113:583–594

    Article  Google Scholar 

Download references

Acknowledgements

The data presented in this paper represent part of the Ph.D thesis of the first author at the Department of Earth Sciences of the University of Yaounde I. The authors are greatly indebted to Dr Landy Soh Tamehe of the School of Geosciences and Info-Physics, Central South University, China for helping in zircon U-Pb data acquisition. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are indebted to Prof. Li Huan and two anonymous reviewers for their thoughtful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvestre Ganno.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mvodo, H., Ganno, S., Kouankap Nono, G.D. et al. Petrogenesis, LA-ICP-MS zircon U-Pb geochronology and geodynamic implications of the Kribi metavolcanic rocks, Nyong Group, Congo craton. Acta Geochim 41, 470–495 (2022). https://doi.org/10.1007/s11631-022-00533-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00533-2

Keywords

Navigation