Skip to main content
Log in

A model of crust–mantle differentiation for the early Earth

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Archean continents, primarily composed of the felsic tonalite–trondhjemite–granodiorite (TTG) suite, were formed or conserved since ~ 3.8 Ga, with significant growth of the continental crust since ~ 2.7 Ga. The difficulty in direct differentiation of the felsic crustal components from Earth’s mantle peridotite leads to a requirement for the presence of a large amount of hydrated mafic precursor of TTG in Earth’s proto-crust, the origin of which, however, remains elusive. The mafic proto-crust may have formed as early as ~ 4.4 Ga ago as reflected by the Hf and Nd isotopic signals from Earth’s oldest geological records. Such a significant time lag between the formation of the mafic proto-crust and the occurrence of felsic continental crust is not reconciled with a single-stage scenario of Earth’s early differentiation. Here, inspired by the volcanism-dominated heat-pipe tectonics witnessed on Jupiter’s moon Io and the resemblances of the intensive internal heating and active magmatism between the early Earth and the present-day Io, we present a conceptual model of Earth’s early crust-mantle differentiation, which involves an Io-like scenario of efficient extraction of a mafic proto-crust from the early mantle, followed by an intrusion-dominating regime that could account for the subsequent formation of the felsic continents as Earth cools. The model thus allows an early formation of the pre-TTG proto-crust and the generation of TTG in the continent by providing the favorable conditions for its subsequent melting. This model is consistent with the observed early fractionation of the Earth and the late but rapid formation and/or accumulation of the felsic components in the Archean continents, thus sheds new light on the early Earth’s differentiation and tectonic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Source: Puetz and Condie (2019)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Barnes SJ, Arndt NT (2019) Distribution and geochemistry of Komatiites and basalts through the Archean. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam, pp 103–132

    Chapter  Google Scholar 

  • Battaglia SM, Stewart MA, Kieffer SW (2014) Io’s theothermal (sulfur) – Lithosphere cycle inferred from sulfur solubility modeling of Pele’s magma supply. Icarus 235:123–129

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9kb. J Petrol 32:365–401

    Article  Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    Article  Google Scholar 

  • Bland MT, McKinnon WB (2016) Mountain building on Io driven by deep faulting. Nat Geosci 9:429–432

    Article  Google Scholar 

  • Blaney DL, Johnson TV, Matson DL, Veeder GJ (1995) Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition. Icarus 113:220–225

    Article  Google Scholar 

  • Bottke WF, Norman MD (2017) The Late Heavy Bombardment. Annu Rev Earth Planet Sci 45:619–647

    Article  Google Scholar 

  • Bottke WF, Vokrouhlický D, Marchi S, Swindle T, Scott ERD, Weirich JR, Levison H (2015) Dating the Moon-forming impact event with asteroidal meteorites. Science 348:321–323

    Article  Google Scholar 

  • Boyet M, Blichert-Toft J, Rosing M, Storey M, Telouk P, Albarede F (2003) Nd-142 evidence for early Earth differentiation. Earth Planet Sci Lett 214:427–442

    Article  Google Scholar 

  • Boyet M, Carlson RW (2005) Nd-142 evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    Article  Google Scholar 

  • Boyet M, Carlson RW (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm–142Nd systematics. Earth Planet Sci Lett 250:254–268

    Article  Google Scholar 

  • Byrne PK, Klimczak C, Sengor AMC, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci 7:301–307

    Article  Google Scholar 

  • Campbell IH, Taylor SR (1983) No water, no granites—no oceans, no continents. Geophys Res Lett 10:1061–1064

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck J-L, Moorbath S (2006) High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim Cosmochim Acta 70:164–191

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck JL, Moorbath S (2003) Sm-146-Nd-142 evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423:428–432

    Article  Google Scholar 

  • Cates NL, Mojzsis SJ (2007) Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth Planet Sci Lett 255:9–21

    Article  Google Scholar 

  • Cates NL, Ziegler K, Schmitt AK, Mojzsis SJ (2013) Reduced, reused and recycled: Detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada). Earth Planet Sci Lett 362:283–293

    Article  Google Scholar 

  • Charlier B, Grove TL, Zuber MT (2013) Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet Sci Lett 363:50–60

    Article  Google Scholar 

  • Clenet H, Jutzi M, Barrat J-A, Asphaug EI, Benz W, Gillet P (2014) A deep crust-mantle boundary in the asteroid 4 Vesta. Nature 511:303–306

    Article  Google Scholar 

  • Condie K (2014) How to make a continent: thirty-five years of TTG research. In: Dilek Y, Furnes H (eds) Evolution of archean crust and early life. Springer, Cham, pp 179–193

    Chapter  Google Scholar 

  • Condie KC (2000) Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322:153–162

    Article  Google Scholar 

  • Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambr Res 180:227–236

    Article  Google Scholar 

  • David J, Godin L, Stevenson R, O’Neil J, Francis D (2009) U-Pb ages (3.8–2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton. Canada GSA Bulletin 121:150–163

    Google Scholar 

  • Davies AG (2007) Io and Earth: formation, evolution, and interior structure. In: Davies AG (ed) Volcanism on Io: a comparison with Earth. Cambridge University Press, New York, pp 53–72

    Chapter  Google Scholar 

  • de Kleer K, de Pater I, Molter EM, Banks E, Davies AG, Alvarez C, Campbell R, Aycock J, Pelletier J, Stickel T, Kacprzak GG, Nielsen NM, Stern D, Tollefson J (2019a) Io’s volcanic activity from time domain adaptive optics observations: 2013–2018. Astron J 158:29–29

    Article  Google Scholar 

  • de Kleer K, Nimmo F, Kite E (2019b) Variability in Io’s volcanism on timescales of periodic orbital changes. Geophys Res Lett 46:6327–6332

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, pp 319–364. Mineralogical Society of America

  • Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191

    Article  Google Scholar 

  • Elkins-Tanton LT (2012) Magma Oceans in the Inner Solar System. Annu Rev Earth Planet Sci 40:113–139

    Article  Google Scholar 

  • Ernst WG (2009) Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res 15:243–253

    Article  Google Scholar 

  • Fischer R, Gerya T (2016) Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling. Gondwana Res 37:53–70

    Article  Google Scholar 

  • Francois C, Philippot P, Rey P, Rubatto D (2014) Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane. Earth Planet Sci Lett 396:235–251

    Article  Google Scholar 

  • Geissler P, McEwen A, Phillips C, Keszthelyi L, Spencer J (2004) Surface changes on Io during the Galileo mission. Icarus 169:29–64

    Article  Google Scholar 

  • Gill R (2010) Basalts and related rocks, Igneous rocks and processes: a practical guide. Blackwell Publishing, Chichester, pp 20–64

    Google Scholar 

  • Gill R (2010) Ultramafic and ultrabasic rocks, igneous rocks and processes: a practical guide. Blackwell Publishing, Chichester, pp 154–160

    Google Scholar 

  • Hamilton CW, Beggan CD, Still S, Beuthe M, Lopes RMC, Williams DA, Radebaugh J, Wright W (2013) Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent. Earth Planet Sci Lett 361:272–286

    Article  Google Scholar 

  • Hawkesworth C, Cawood PA, Dhuime B (2019) Rates of generation and growth of the continental crust. Geosci Front 10:165–173

    Article  Google Scholar 

  • Hawkesworth CJ, Cawood PA, Dhuime B, Kemp TIS (2017) Earth’s continental lithosphere through time. Annu Rev Earth Planet Sci 45:169–198

    Article  Google Scholar 

  • Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc 167:229–248

    Article  Google Scholar 

  • Head JW, Chapman CR, Strom RG, Fassett CI, Denevi BW, Blewett DT, Ernst CM, Watters TR, Solomon SC, Murchie SL, Prockter LM, Chabot NL, Gillis-Davis JJ, Whitten JL, Goudge TA, Baker DMH, Hurwitz DM, Ostrach LR, Xiao ZY, Merline WJ, Kerber L, Dickson JL, Oberst J, Byrne PK, Klimczak C, Nittler LR (2011) Flood volcanism in the Northern high latitudes of mercury revealed by MESSENGER. Science 333:1853–1856

    Article  Google Scholar 

  • Head JW, Murchie SL, Prockter LM, Solomon SC, Chapman CR, Strom RG, Watters TR, Blewett DT, Gillis-Davis JJ, Fassett CI, Dickson JL, Morgan GA, Kerber L (2009) Volcanism on Mercury: evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet Sci Lett 285:227–242

    Article  Google Scholar 

  • Head JW, Wilson L (1992) Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 56:2155–2175

    Article  Google Scholar 

  • Helz RT (2009) Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake. Hawaii Lithos 111:37–46

    Article  Google Scholar 

  • Herzberg C (1992) Depth and degree of melting of komatiites. J Geophys Res Solid Earth 97:4521–4540

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G (2003) Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J Geophys Res Planets 108:5065

    Article  Google Scholar 

  • Hoffmann JE, Zhang C, Moyen J-F, Nagel TJ (2019) The formation of tonalitese-trondjhemitee-granodiorites in early continental crust. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam, pp 133–168

    Chapter  Google Scholar 

  • Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. Geochim Cosmochim Acta 45:1633e1652

    Article  Google Scholar 

  • Jellinek AM, Kerr RC (2001) Magma dynamics, crystallization, and chemical differentiation of the 1959 Kilauea Iki lava lake, Hawaii, revisited. J Volcanol Geoth Res 110:235–263

    Article  Google Scholar 

  • Jessup KL, Spencer J, Yelle R (2007) Sulfur volcanism on Io. Icarus 192:24–40

    Article  Google Scholar 

  • Johnson TE, Brown M, Kaus BJP, VanTongeren JA (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci 7:47–52

    Article  Google Scholar 

  • Johnson TV, Cook AF, Sagan C, Soderblom LA (1979) Volcanic resurfacing rates and implications for volatiles on Io. Nature 280:746–750

    Article  Google Scholar 

  • Johnson TV, Veeder GJ, Matson DL, Brown RH, Nelson RM, Morrison D (1988) Io: Evidence for Silicate Volcanism in 1986. Science 242:1280–1283

    Article  Google Scholar 

  • Kankanamge DGJ, Moore WB (2016) Heat transport in the Hadean mantle: from heat pipes to plates. Geophys Res Lett 43:3208–3214

    Article  Google Scholar 

  • Kargel J, Carlson R, Davies A, Fegley B, Gillespie A, Greeley R, Howell R, Jessup KL, Kamp L, Keszthelyi L, Lopes R, MacIntyre T, Marchis F, McEwen A, Milazzo M, Perry J, Radebaugh J, Schaefer L, Schmerr N, Smythe W, Spencer J, Williams D, Zhang J, Zolotov M (2003) Extreme volcanism on Io: latest insights at the end of Galileo era. EOS Trans Am Geophys Union 84:313–313

    Article  Google Scholar 

  • Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56

    Article  Google Scholar 

  • Keszthelyi L (1999) Revisiting the hypothesis of a mushy global magma ocean in Io. Icarus 141:415–419

    Article  Google Scholar 

  • Keszthelyi L, Jaeger W, Milazzo M, Radebaugh J, Davies AG, Mitchell KL (2007) New estimates for Io eruption temperatures: Implications for the interior. Icarus 192:491–502

    Article  Google Scholar 

  • Keszthelyi L, Jaeger WL, Turtle EP, Milazzo M, Radebaugh J (2004) A post-Galileo view of Io’s interior. Icarus 169:271–286

    Article  Google Scholar 

  • Keszthelyi L, McEwen A (1997) Magmatic differentiation of Io. Icarus 130:437–448

    Article  Google Scholar 

  • Khurana KK, Jia X, Kivelson MG, Nimmo F, Schubert G, Russell CT (2011) Evidence of a global magma ocean in Io’s interior. Science 332:1186–1189

    Article  Google Scholar 

  • Korenaga T, Korenaga J (2016) Evolution of young oceanic lithosphere and the meaning of seafloor subsidence rate. J Geophys Res Solid Earth 121:6315–6332

    Article  Google Scholar 

  • Laurie A, Stevens G (2012) Water-present eclogite melting to produce Earth’s early felsic crust. Chem Geol 314:83–95

    Article  Google Scholar 

  • Leone G, Wilson L (2001) Density structure of Io and the migration of magma through its lithosphere. J Geophys Res Planets 106:32983–32995

    Article  Google Scholar 

  • Leone G, Wilson L, Davies AG (2011) The geothermal gradient of Io: consequences for lithosphere structure and volcanic eruptive activity. Icarus 211:623–635

    Article  Google Scholar 

  • Lesher C, Spera F (2015) Thermodynamic and transport properties of silicate melts and magma. Elsevier, Amsterdam, pp 113–141

    Google Scholar 

  • Lourenco DL, Rozel AB, Gerya T, Tackley PJ (2018) Efficient cooling of rocky planets by intrusive magmatism. Nat Geosci 11:322–327

    Article  Google Scholar 

  • Marchi S, Chapman CR, Fassett CI, Head JW, Bottke WF, Strom RG (2013) Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism. Nature 499:59–61

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Matson DL, Davies AG, Veeder GJ, Rathbun JA, Johnson TV, Castillo JC (2006) Io: Loki Patera as a magma sea. J Geophys Res Planets 111:E09002

    Article  Google Scholar 

  • McEwen AS (2002) Active volcanism on Io. Science 297:2220–2221

    Article  Google Scholar 

  • McEwen AS, Keszthelyi L, Spencer JR, Schubert G, Matson DL, Lopes-Gautier R, Klassen KP, Johnson TV, Head JW, Geissler P, Fagents S, Davies AG, Carr MH, Breneman HH, Belton MJS (1998) High-temperature silicate volcanism on Jupiter’s moon Io. Science 281:87–90

    Article  Google Scholar 

  • McEwen AS, Simonelli DP, Senske DR, Klaasen KP, Keszthelyi L, Johnson TV, Geissler PE, Carr MH, Belton MJS (1997) High-temperature hot spots on Io as seen by the Galileo Solid State Imaging (SSI) Experiment. Geophys Res Lett 24:2443–2446

    Article  Google Scholar 

  • McSween HY, Raymond CA, Stolper EM, Mittlefehldt DW, Baker MB, Lunning NG, Beck AW, Hahn TM (2019) Differentiation and magmatic history of Vesta: constraints from HED meteorites and Dawn spacecraft data. Geochemistry 79:12556

    Article  Google Scholar 

  • Moore WB (2003) Tidal heating and convection in Io. J Geophys Res 108:5096–5096

    Article  Google Scholar 

  • Moore WB, Schubert G, Anderson JD, Spencer JR (2007) The interior of Io. In: Moore WB, Spencer JR (eds) Io after Galileo: anew view of Jupiter’s volcanic moon. Springer and Praxis, Chichester, pp 89–108

    Google Scholar 

  • Moore WB, Simon JI, Webb AAG (2017) Heat-pipe planets. Earth Planet Sci Lett 474:13–19

    Article  Google Scholar 

  • Moore WB, Webb AAG (2013) Heat-pipe Earth. Nature 501:501–505

    Article  Google Scholar 

  • Morabito LA, Synnott SP, Kupferman PN, Collins SA (1979) Discovery of currently active extraterrestrial volcanism. Science 204:972–972

    Article  Google Scholar 

  • Moyen J-F (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Article  Google Scholar 

  • Moyen J-F, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Article  Google Scholar 

  • Moyen J-F, Stevens G (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In: Benn K, Mareschal JC, Condie KC (eds) Archean geodynamics and environments, pp 149–175

  • Multhaup K (2009) Thermal evolution of Mercury: Effects of volcanic heat-piping. Geophys Res Lett 36:L18201

    Article  Google Scholar 

  • Norman MD (2019) Origin of the Earth and the late heavy bombardment. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam, pp 27–47

    Chapter  Google Scholar 

  • O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 Evidence for Hadean Mafic Crust. Science 321:1828–1831

    Article  Google Scholar 

  • O’Neil J, Rizo H, Boyet M, Carlson RW, Rosing MT (2016) Geochemistry and Nd isotopic characteristics of Earth’s Hadean mantle and primitive crust. Earth Planet Sci Lett 442:194–205

    Article  Google Scholar 

  • O’Reilly TC, Davies GF (1981) Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys Res Lett 8:313–316

    Article  Google Scholar 

  • O’Neil J, Carlson RW, Paquette J-L, Francis D (2012) Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambr Res 220–221:23–44

    Article  Google Scholar 

  • O’Neil J, Boyet M, Carlson RW, Paquette J-L (2013) Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. Earth Planet Sci Lett 379:13–25

    Article  Google Scholar 

  • Patiño-Douce AE, Beard JS (1995) Dehydration-melting of biotite Gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 35:707–738

    Article  Google Scholar 

  • Peale SJ, Cassen P, Reynolds RT (1979) Melting of Io by tidal dissipation. Science 203:892–894

    Article  Google Scholar 

  • Puetz SJ, Condie KC (2019) Time series analysis of mantle cycles Part I: Periodicities and correlations among seven global isotopic databases. Geosci Front 10:1305–1326

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites. Precambr Res 51:1–25

    Article  Google Scholar 

  • Reimink JR, Chacko T, Stern RA, Heaman LM (2014) Earth’s earliest evolved crust generated in an Iceland-like setting. Nat Geosci 7:529–533

    Article  Google Scholar 

  • Reimink JR, Davies JHFL, Chacko T, Stern RA, Heaman LM, Sarkar C, Schaltegger U, Creaser RA, Pearson DG (2016) No evidence for Hadean continental crust within Earth’s oldest evolved rock unit. Nat Geosci 9:777–780

    Article  Google Scholar 

  • Reimink JR, Davies JHFL, Ielpi A (2021) Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean. Earth Planet Sci Lett 554:116654

    Article  Google Scholar 

  • Rizo H, Boyet M, Blichert-Toft J, Rosing M (2011) Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet Sci Lett 312:267–279

    Article  Google Scholar 

  • Rozel AB, Golabek GJ, Jain C, Tackley PJ, Gerya T (2017) Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545:332–335

    Article  Google Scholar 

  • Schenk P, Hargitai H, Wilson R, McEwen A, Thomas P (2001) The mountains of Io: global and geological perspectives from Voyager and Galileo. J Geophys Res Planets 106:33201–33222

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001a) Heat Conduction and the age of the earth, mantle convection in the earth and planets. Cambridge University Press, Cambridge, pp 118–212

    Book  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001b) Physical constants and properties, mantle convection in the Earth and planets. Cambridge University Press, Cambridge, pp 575–580

    Book  Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116:209–229

    Article  Google Scholar 

  • Smithies RH, Lu Y, Kirkland CL, Johnson TE, Mole DR, Champion DC, Martin L, Jeon H, Wingate MTD, Johnson SP (2021) Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592:70–75

    Article  Google Scholar 

  • Smythe WD, Nelson RM, Nash DB (1979) Spectral evidence for SO2 frost or adsorbate on Io’s surface. Nature 280:766–766

    Article  Google Scholar 

  • Solomatov V (2015) Magma oceans and primordial mantle differentiation. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 81–104

    Chapter  Google Scholar 

  • Spencer JR, Jessup KL, McGrath MA, Ballester GE, Yelle R (2000) Discovery of gaseous S2 in Io’s Pele Plume. Science 288:1208–1210

    Article  Google Scholar 

  • Spencer JR, Stern SA, Cheng AF, Weaver HA, Reuter DC, Retherford K, Lunsford A, Moore JM, Abramov O, Lopes RMC, Perry JE, Kamp L, Showalter M, Jessup KL, Marchis F, Schenk PM, Dumas C (2007) Io volcanism seen by New Horizons: A major eruption of the Tvashtar Volcano. Science 318:240–243

    Article  Google Scholar 

  • Stern RA, Bleeker W (1998) Age of the world’s oldest rocks refined using Canada’s SHRIMP: the Acasta Gneiss Complex, Northwest Territories, Canada. Geosci Can 25:27–31

    Google Scholar 

  • Stern RJ, Leybourne MI, Tsujimori T (2016) Kimberlites and the start of plate tectonics. Geology 44:799–802

    Article  Google Scholar 

  • Stevenson DJ (2008) A planetary perspective on the deep Earth. Nature 451:261–265

    Article  Google Scholar 

  • Strom RG, Schneider NM, Terrile RJ, Cook AF, Hansen C (1981) Volcanic eruptions on Io. J Geophys Res Space Physics 86:8593–8620

    Article  Google Scholar 

  • Terada K, Anand M, Sokol AK, Bischoff A, Sano Y (2007) Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450:849-U814

    Article  Google Scholar 

  • Turcotte DL (1989) A heat pipe mechanism for volcanism and tectonics on Venus. J Geophys Res Solid Earth Planets 94:2779–2785

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Miner Petrol 150:561–580

    Article  Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354

    Article  Google Scholar 

  • van Hunen J, Moyen J-F (2012) Archean subduction: fact or fiction? Annu Rev Earth Planet Sci 40:195–219

    Article  Google Scholar 

  • van Hunen J, van den Berg AP (2008) Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–235

    Article  Google Scholar 

  • Veeder GJ, Matson DL, Johnson TV, Blaney DL, Goguen JD (1994) Io’s heat flow from infrared radiometry: 1983–1993. J Geophys Res 99:17095–17095

    Article  Google Scholar 

  • Watters TR, Robinson MS, Cook AC (1998) Topography of lobate scarps on Mercury: new constraints on the planet’s contraction. Geology 26:991–994

    Article  Google Scholar 

  • Wei C, Guan X, Dong J (2017) HT-UHT metamorphism of metabasites and the petrogenesis of TTGs. Acta Petrol Sin 33:1381–1404 (in Chinese)

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Williams DA, Wilson AH, Greeley R (2000) A komatiite analog to potential ultramafic materials on Io. J Geophys Res Planets 105:1671–1684

    Article  Google Scholar 

  • Wilson L, Head JW (2008) Volcanism on Mercury: a new model for the history of magma ascent and eruption. Geophys Res Lett 35:L23205

    Article  Google Scholar 

  • Wilson L, Keil K (2012) Volcanic activity on differentiated asteroids: a review and analysis. Chem Erde-Geochem 72:289–321

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar - the effects of temperature and time. Contrib Miner Petrol 115:369–383

    Article  Google Scholar 

  • Zhai M (2019) Tectonic evolution of the North China Craton. J Geomech 25:722–745 (in Chinese)

    Google Scholar 

  • Zhang Q, Liu Y (2020) Possible heat-pipe tectonics of the early Earth: insights from Jupiter’s moon Io. Acta Petrol Sin 36:3853–3870 (in Chinese)

    Article  Google Scholar 

  • Zhang Q, Zhai M (2012) What is the Archean TTG? Acta Petrol Sin 28:3446–3456 (in Chinese)

    Google Scholar 

  • Zhao G, Zhang G (2021) Origin of continents. Acta Geol Sin 95:1–19 (in Chinese)

    Google Scholar 

  • Zhu R, Zhao G, Xiao W, Chen L, Tang Y (2021) Origin, accretion and reworking of continents. Rev Geophys 59:e2019RG000689

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript benefits from the constructive comments and suggestions of reviewers Prof. Guochun Zhao and Dr. Da Wang. We thank Prof. Xiaobin Cao for providing literature about the oxygen isotope of early Earth’s rocks. The work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 41804092, 42130114), the Pre-research Project on Civil Aerospace Technologies (No. D020202) funded by the Chinese National Space Administration (CNSA), and the Strategic Priority Research Program (B) of CAS (XDB41000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhu, D., Du, W. et al. A model of crust–mantle differentiation for the early Earth. Acta Geochim 41, 689–703 (2022). https://doi.org/10.1007/s11631-022-00529-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00529-y

Keywords

Navigation