Skip to main content
Log in

An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary mineral precipitation

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

In order to clarify the dynamic process of feldspar dissolution–precipitation and explore the formation mechanism of secondary porosity, six batch reactor experiments were conducted at 200 °C and pH = 7 measured at room temperature. Temporal evolution of fluid chemistry was analyzed with an inductively coupled plasma optical emission spectrometer (ICP-OES). Solid reaction products were retrieved from six batch experiments terminated after 36, 180, 276, 415, 766 and 1008 h. Scanning electron microscopy (SEM) revealed dissolution features and significant secondary mineral adhered on the feldspar surface. The process of feldspar dissolution–precipitation proceeded slowly and full equilibrium was not achieved after 1008 h. Saturation indices suggested that the albite and K-feldspar dissolution occurred throughout the experiments. The average dissolution rates for albite and K-feldspar were 2.28 × 10−10 and 8.51 × 10−11 mol m−2 s−1, respectively. Based on the experimental data, the reaction process of alkaline feldspar was simulated and the secondary porosity had increased 0.3% after the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekseyev VA, Medvedeva LS, Prisyagina NI, Meshalkin SS, Balabin AI (1997) Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium. Geochim Cosmochim Acta 61(6):1125–1142

    Article  Google Scholar 

  • Baruch ET, Kennedy MJ, Löhr SC et al (2015) Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia). Aapg Bull 99(9):1745–1770

    Article  Google Scholar 

  • Bevan J, Savage D (1989) The effect of organic acids on the dissolution of K-feldspar under conditio-ns relevant to burial diagenesis. Mineral Mag 53(372):415–425

    Article  Google Scholar 

  • Brantley SL (2003) Reaction kinetics of primary rock-forming minerals under ambient conditions. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering, and Soils.Holland, H.D., Turekian, K.K. (Eds.), Treatise o-n Geochemistry, Vol. 5, Pergamon Press, Oxford, 73–117

    Chapter  Google Scholar 

  • Brantley SL (2008) Kinetics of mineral dissolution. Springer, New york, pp 151–210

    Google Scholar 

  • Burch TE, Nagy KL, Lasaga AC (1993) Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem Geol 105:137–162

    Article  Google Scholar 

  • Casey WH, Westrich HR, Arnold GW (1988) Surface chemistry of labradorite feldspar reacted with aqueous sol-utions at pH, = 2, 3, and, 12. Geochim Cosmochim Acta 52(12):2795–2807

    Article  Google Scholar 

  • Crundwell FK (2015) The mechanism of dissolution of the feldspars: part I. dissolution at conditions far from equilibrium. Hydrometallurgy 151:151–162

    Article  Google Scholar 

  • Devidal J, Schott J, Dandurand J (1997) An experimental study of kaolinite dissolution and precipita-tion kinetics as a function of chemical affinity and solution composition at 150 °C, 40 bars, and pH 2, 6.8, and 7.8. Geochim Cosmochim Acta 61(24):5165–5186

    Article  Google Scholar 

  • Ehrenberg SN (1991) Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine Pet Geol 8(3):250–269

    Article  Google Scholar 

  • Ehrenberg SN (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwe-gian continental shelf. Br J Oral Maxillofacial Surg 28(3):325–352

    Google Scholar 

  • Fu Q, Peng L, Konishi H et al (2009) Coupled alkaline feldspar dissolution and secondary mineral pre-cipitation in batch systems: 1. New experiments at 200 °C and 300 bars. Chem Geol 258(3–4):125–135

    Article  Google Scholar 

  • Ganor J, Lu P, Zheng Z, Zhu C (2007) Bridging the gap between laboratory measurements and field estimations of silicate weathering using simple calculations. Environ Geol 53(3):599–610

    Article  Google Scholar 

  • Gautier JM, Oelkers EH, Schott J (1994) Experimental study of K-feldspar dissolution rates as a fun-ction of chemical affinity at 150°C and pH 9. Geochim Cosmochim Acta 58:4549–4560

    Article  Google Scholar 

  • Giles MR, De Boer RB (1990) Origin and significance of redistributional secondary porosity. Mar Pet Geol 7(4):378–397

    Article  Google Scholar 

  • Gong Q, Deng J, Wang Q et al (2008) Calcite dissolution in deionized water from 50°C to 250°C at 10 MPa: rate equation and reaction order. Acta Geol Sin 82(5):994–1001

    Google Scholar 

  • Hellevang H, Pham VTH, Aagaard P (2013) Kinetic modelling of CO2–water–rock interactions. Int J Greenh Gas Control 15:3–15

    Article  Google Scholar 

  • Hellmann R (1994) The albite-water system: part I. The kinetics of dissolution as a function of pH at 100, 200, and 300 °C. Geochim Cosmochim Acta 58:595–611

    Article  Google Scholar 

  • Hellmann R, Tisserand D (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: an experimental study based on albite feldspar. Geochim Cosmochim Acta 70(2):364–383

    Article  Google Scholar 

  • Hellmann R, Penisson J-M, Hervig RL, Thomassin J-H, Abrioux M-F (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution–reprecipitation. Phys Chem Miner 30:192–197

    Article  Google Scholar 

  • Hellmann R, Penisson J-M, Hervig RL, Thomassin J-H, Abrioux M-F (2004) Chemical alteration-n of feldspar: a comparative study using SIMS and HRTEM/EFTEM. In: Wanty RB, Seal RR (Eds), Proceedings of the 11th international symposium on water–rock interaction, Saratoga Springs, New York

  • Hellmann R, Daval D, Tisserand D (2010) The dependence of albite feldspar dissolution kinetics on fluid saturation state at acid and basic pH: progress towards a universal relation. C R Geosci 342(7–8):676–684

    Article  Google Scholar 

  • Higgs KE, Zwingmann H, Reyes AG et al (2007) Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand. J Sediment Res 77(12):1003–1025

    Article  Google Scholar 

  • Huang WL (1986) The effect of fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions. Clay Miner 21(4):585–601

    Article  Google Scholar 

  • Huang S, Huang K, Feng W (2009) Mass exchanges among feldspar, kaolinite and illite and their influe-nces on secondary porosity formation in clastic diagenesis: a case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan depression. Geochimica 38(5):498–506

    Google Scholar 

  • Johnson James W, Oelkers Eric H, Helgeson Harold C (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18(7):899–947

    Article  Google Scholar 

  • Lagache M (1976) New data on the kinetics of the dissolution of alkali feldspars at 200 °C in CO2 charged water. Geochim Cosmochim Acta 40(2):157–161

    Article  Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water-rock interactions. J Geophys Res Solid Earth (1978–2012) 89(B6): 4009–4025

    Article  Google Scholar 

  • Liao P, Wang Q, Tang J et al (2014) Diagenesis and porosity evolution of sandstones reservoir from Chang 8 of Yanchang formation in Huanxian–Huachi region of Ordos Basin. Zhongnan Daxue Xuebao 45(9):3200–3210

    Google Scholar 

  • Luo XJ, Dong YW, Xi LR et al (2001) Effects of pH on the solubility of the feldspar and the development of secondary porosity. Bull Mineral Pet Geochem 20(2):103–107

    Google Scholar 

  • Maskell A, Kampman N, Chapman H et al (2015) Kinetics of CO2–fluid–rock reactions in a basalt aquifer, Soda Springs, Idaho. Appl Geochem 61:272–283

    Article  Google Scholar 

  • Nagy KL, Lasaga AC (1992) Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: the dependence on solution saturation state. Geochim Cosmochim Acta 56(8):3093–3111

    Article  Google Scholar 

  • Oelkers EH, Schott J, Devidal J-L (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim Cosmochim Acta 58:2011–2024

    Article  Google Scholar 

  • O’Neil JR (1977) Stable isotopes in mineralogy. Phys Chem Miner 2(1–2):105–123

    Article  Google Scholar 

  • O’Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

  • Parkhurst DL (1995) User guide to PHREEQC-A computer program for speciation, reaction path, advective-transport, and inverse geochemical calculations. Center for Integrated Data Analytics Wisconsin Science Center

  • Peng L, Qi F et al (2013) Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 2. New experiments with supercritical CO2 and implications for carbon sequestration. Appl Geochem 30:75–90

    Article  Google Scholar 

  • Peng L, Konishi H, Oelkers E et al (2015) Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 5. Results of K-feldspar hydrolysis experiments. Chin J Geochem 34(1):1–12

    Article  Google Scholar 

  • Rückheim J, England WA (1990) Organic geochemistry of petroleum reservoirs. Org Geochem 16(1–3):415–425

    Google Scholar 

  • Schmidt RB, Bucher K, Druppel K, Stober I (2017) Experimental interaction of hydrothermal Na-Cl solution with fracture surfaces of geothermal reservoir sandstone of the Upper Rhine Graben. Appl Geochem 81:36–52

    Article  Google Scholar 

  • Steefel CI, Cappellen PV (1990) A new kinetic approach to modeling water-rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim Cosmochim Acta 54(10):2657–2677

    Article  Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model fortransport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow insingle phase hydrothermal systems. Am J Sci 294(5):529–592

    Article  Google Scholar 

  • Stillings LL, Brantley SL (1995) Feldspar dissolution at 25°C and pH 3: reaction stoichiometry and the effect of cations. Geochim Cosmochim Acta 59(8):1483–1496

    Article  Google Scholar 

  • Welch SA, Ullman WJ, Welch SA et al (2000) The temperature dependence of bytownite feldspar dissolution in neutral aqueous solutions of inorganic and organic ligands at low temperature (5–35 °C). Chem Geol 167(3):337–354

    Article  Google Scholar 

  • Wild B, Daval D, Guyot F et al (2016) PH-dependent control of feldspar dissolution rate by altered surf-ace layers. Chem Geol 442:148–159

    Article  Google Scholar 

  • Wilkinson M, Milliken KL, Haszeldine RS (2001) Systematic destruction of K-feldspar in deeply buried rift and passive margin sandstones. J Geol Soc 158(4):675–683

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem Geol 217(3–4):295–318

    Article  Google Scholar 

  • Yuan G, Cao Y, Jia Z et al (2015) Selective dissolution of feldspars in the presence of carbonates: the way to generate secondary pores in buried sandstones by organic CO2. Mar Pet Geol 60(5):105–119

    Article  Google Scholar 

  • Zhu C, Lu P., 2009. Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths. Geochim Cosmochim Acta, 73(11):3171-3200

    Article  Google Scholar 

  • Zhu C, Blum AE, Veblen DR (2004a) Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa, Arizona, USA. In: Wanty RB, Seal RI (Eds), Proceedings of the 11th international symposium on water–rock interaction. A. A. Balkema, New York, pp 895–899

  • Zhu C, Blum AE, Veblen DR (2004b) Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa, Arizona, USA. In: Eleventh international symposium on water-rock interaction Wri, pp 895–899

  • Zhu C, Blum AE, Veblen DR (2004c) A new hypothesis for the slow feldspar dissolution in groundwater aquifers V M Goldschmidt Conference. A148

  • Zhu C, Veblen DR, Blum AE, Chipera SJ (2006) Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: electron microscopic characterization. Geochim Cosmochim Acta 70:4600–4616

    Article  Google Scholar 

  • Zhu C et al (2016) Measuring silicate mineral dissolution rates using Si isotope doping. Chem Geol 445:146–163

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Major Project “Bohai Bay Basin deep oil and gas geology and reserves increasing direction” (No. 2016ZX05006-007) and the National Natural Fund (Youth) “Relationship between rich feldspar sandstone reservoirs in feldspar alteration and pyrolysis of hydrocarbons” (41602138).We appreciated the SEM–EDS analysis by Guanghui Yuan from School of Geoscience at China University of Petroleum. We thanked the Institute of Oceanology, Chinese Academy of Sciences for chemical analysis of fluid samples. At the same time, we also thanked College of Chemical Engineering at China University of Petroleum for the assistance with analysis of XRD, BET, and XRF. We appreciate Juntao Xing in revising the manuscript and data processing. Comments by reviewers were much appreciated and helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, C., Xing, J. et al. An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary mineral precipitation. Acta Geochim 38, 872–882 (2019). https://doi.org/10.1007/s11631-019-00326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00326-0

Keywords

Navigation