Skip to main content
Log in

Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 5. Results of K-feldspar hydrolysis experiments

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fifth paper in our series of “Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems.” In the previous four papers we presented batch experiments of alkali-feldspar hydrolysis and explored the coupling of dissolution and precipitation reactions (Fu et al. in Chem Geol 91:955–964, 2009; Zhu and Lu in Geochim Cosmochim Acta 73:3171–3200, 2009; Zhu et al.in Geochim Cosmochim Acta 74:3963–3983, 2010; Lu et al. in Appl Geochem 30:75–90, 2013). Here, we present the results of additional K-rich feldspar hydrolysis experiments at 150 °C. Our solution chemistry measurements have constrained feldspar dissolution rates, and our high resolution transmission electron microscopy work has identified boehmite precipitation. Reaction path modeling of K-feldspar dissolution and boehmite precipitation simulated the coupled reactions, but only with forced changes of boehmite rate law in the middle of experimental duration. The results which are reported in this article lend further support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates (Zhu et al. in Water–rock interaction, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aagaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations. Am J Sci 282:237–285

    Article  Google Scholar 

  • Beig MS, Lüttge A (2006) Albite dissolution kinetics as a function of distance from equilibrium: implications for natural feldspar weathering. Geochim Cosmochim Acta 70:1402–1420

    Article  Google Scholar 

  • Bénézeth P, Palmer DA, Wesolowski DJ (2008) Dissolution/precipitation kinetics of boehmite and gibbsite: application of a pH-relaxation technique to study near-equilirbium rates. Geochim Cosmochim Acta 72:2429–2453

    Article  Google Scholar 

  • Blum A, Stillings L (1995) Feldspar dissolution kinetics. In: Brantley SL, White AR (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Washington, pp 291–346

    Google Scholar 

  • Brantley SL (1992) Kinetics of dissolution and precipitation-experimental and field results. In: Kharaka Y, Maest A (eds) Proceedings of the seventh international conference on water-rock interactions, Park City, Utah. Balkema, Rotterdam, pp 465–469

    Google Scholar 

  • Burch TE, Nagy KL, Lasaga AC (1993) Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem Geol 105:137–162

    Article  Google Scholar 

  • Carroll SA, Knauss KG (2005) Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature. Chem Geol 217:213–225

    Article  Google Scholar 

  • Cubilas P, Kohler S, Prieto M, Causserand C, Oelkers EH (2005) How do mineral coating affect dissolution rates? An experimental study of coupled CaCO3 dissolution–CaCO3 precipitation. Geochim Cosmochim Acta 69:5459–5476

    Article  Google Scholar 

  • Daval D, Sissmann O, Menguy N, Saldi GD, Guyot F, Martinez I, Corvisier J, Garcia B, Machouk I, Knauss KG, Hellmann R (2011) Influence of amorphous silica layer formation on the dissolution rate of olivine at 90° C and elevated pCO2. Chem Geol 284:193–209

  • Deer W, Howie R, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Longman Scientific and Technical Group, Inc, Oceanside

    Google Scholar 

  • Drever JI, Clow DW (1995) Weathering rates in catchments. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, New York, pp 463–481

    Google Scholar 

  • Fu Q, Lu P, Konishi H, Dilmore R, Xu H, Seyfried WE Jr, Zhu C (2009) Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems: 1. New experiment data at 200 oC and 300 bars. Chem Geol 91:955–964

    Google Scholar 

  • Ganor J, Lu P, Zheng Z, Zhu C (2007) Bridging the gap between laboratory measurements and field estimations of weathering using simple calculations. Environ Geol 53:599–610

    Article  Google Scholar 

  • Gautier J-M, Oelkers EH, Schott J (1994) Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150 °C and pH 9. Geochim Cosmochim Acta 58:4549–4560

    Article  Google Scholar 

  • Gautier JM, Oelkers EH, Schott J (2001) Are quartz dissolution rates proportional to BET surface areas? Geochim Cosmochim Acta 65:1059–1070

    Article  Google Scholar 

  • Haar L, Gallagher JS, Kell GS (1984) NBS/NRC steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Hemisphere Publishing Corporation, New York 320p

    Google Scholar 

  • Harouiya N, Oelkers EH (2004) An experimental study of the effect of aqueous fluoride on quartz and alkali-feldspar dissolution rates. Chem Geol 205:155–167

    Article  Google Scholar 

  • Heinemann S, Wirth R, Dresen G (2003) TEM study of a special grain boundary in a synthetic K-feldspar bicrystal: manebach Twin. Phys Chem Miner 30:125–130

    Article  Google Scholar 

  • Hellmann R, Penisson JM, Hervig RL, Thomassin JH, Abrioux MF (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution-reprecipitation. Phys Chem Miner 30:192–197

    Article  Google Scholar 

  • Hellmann R, Tisserand D (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: an experimental study based on albite feldspar. Geochim Cosmochim Acta 70:364–383

    Article  Google Scholar 

  • Hemingway BS, Robie RA, Apps JA (1991) Revised values for the thermodynamic properties of boehmite, AlO(OH), and related species and phases in the system Al-H-O. Am Mineral 76:445–457

    Google Scholar 

  • Hereford AG, Keating E, Guthrie G, Zhu C (2007) Reactions and reaction rates in the aquifer beneath Pajarito Plateau, north-central New Mexico. Environ Geol 52:965–977

    Article  Google Scholar 

  • Ho PC, Bianchi H, Palmer DA, Wood RH (2000) Conductivity of dilute aqueous electrolyte solutions at high temperatures and pressures using a flow cell. J Solut Chem 29:217–235

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Koroleff F (1976) Determination of silicon. In: Grasshoff K (ed) Methods of seawater analysis. Spring Verlag, Newyork, pp 149–158

    Google Scholar 

  • Lasaga AC (1981a) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Mineralogical Society of America, Washington, pp 1–68

    Google Scholar 

  • Lasaga AC (1981b) Transition state theory. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Mineralogical Society of America, Washington, pp 135–169

    Google Scholar 

  • Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, New York

    Book  Google Scholar 

  • Li L, Steefel CI, Yang L (2008) Scale dependence of mineral dissolution rates within single pores and fractures. Geochim Cosmochim Acta 72:360–377

    Article  Google Scholar 

  • Lu P, Fu Q, Seyfried WE Jr, Hedges SW, Soong Y, Jones K, Zhu C (2013) Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 2. New experiments with supercritical CO2 and implications for carbon sequestration. Appl Geochem 30:75–90

    Article  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391

    Article  Google Scholar 

  • Murakami T, Kogure T, Kadohara H, Ohnuki T (1998) Formation of secondary minerals and its effects on anorthite dissolution. Am Mineral 83:1209–1219

    Google Scholar 

  • Nagy KL (1995) Dissolution and precipitation kinetics of sheet silicates. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Washington, pp 173–225

    Google Scholar 

  • Nugent MA, Brantley SL, Pantano CG, Maurice PA (1998) The influence of natural mineral coatings on feldspar weathering. Nature 395:588–591

    Article  Google Scholar 

  • Oelkers EH (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta 65:3703–3719

    Article  Google Scholar 

  • Oelkers EH, Schott J, Devidal JL (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim Cosmochim Acta 58:2011–2024

    Article  Google Scholar 

  • Paces T (1973) Steady-state kinetics and equilibrium between ground water and granitic rocks. Geochim Cosmochim Acta 37:2641–2663

    Article  Google Scholar 

  • Siegel DI, Pfannkuch HO (1984) Silicate dissolution influence on Filson Creek chemistry, northeastern Minnesota. Geol Soc Am Bull 95:1446–1453

    Article  Google Scholar 

  • Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 5 Kb and 1000 °C. Geochim Cosmochim Acta 61:1359–1412

    Article  Google Scholar 

  • Tagirov B, Schott J (2001) Aluminum speciation in crustal fluids revisited. Geochim Cosmochim Acta 65:3965–3992

    Article  Google Scholar 

  • Velbel MA (1990) Influence of temperature and mineral surface characteristics on feldspar weathering rates in natural and artificial systems: a first approximation. Water Resour Res 26:3049–3053

    Google Scholar 

  • White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates in the laboratory and field? Chem Geol 202:479–506

    Article  Google Scholar 

  • Zhu C (2005) In situ feldspar dissolution rates in an aquifer. Geochim Cosmochim Acta 69:1435–1453

    Article  Google Scholar 

  • Zhu C (2009) Geochemical modeling of reaction paths and geochemical reaction networks. In: Oelkers EH, Schott J (eds) Thermodynamics and kinetics of water-rock interaction. Mineralogical Society of America, Washington, pp 533–569

    Google Scholar 

  • Zhu C, Blum AE, Veblen DR (2004) Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa, Arizona, USA. In: Wanty RB, Seal RRI (eds) Water-rock interaction. August Aimé Balkema, Saratoga Springs, pp 895–899

    Google Scholar 

  • Zhu C, Lu P (2009) Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths. Geochim Cosmochim Acta 73:3171–3200

    Article  Google Scholar 

  • Zhu C, Lu P, Zheng Z, Ganor J (2010) Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths. Geochim Cosmochim Acta 74:3963–3983

    Article  Google Scholar 

  • Zhu C, Veblen DR, Blum AE, Chipera SJ (2006) Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: electron microscopic characterization. Geochim Cosmochim Acta 70:4600–4616

    Article  Google Scholar 

Download references

Acknowledgments

A research grant from the State Key Laboratory of Ore Deposits at the Institute of Geochemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Konishi, H., Oelkers, E. et al. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 5. Results of K-feldspar hydrolysis experiments. Chin. J. Geochem. 34, 1–12 (2015). https://doi.org/10.1007/s11631-014-0029-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-014-0029-z

Keywords

Navigation