Skip to main content
Log in

The chromite deposits associated with ophiolite complexes, Southeastern Desert, Egypt: Petrological and geochemical characteristics and mineralization

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The podiform chromities occur in a well-preserved mantle sequence consisting of lherzolite-harzburgite with abundant lenses of olivine dunite. The podiform chromitite deposits are common as small and irregularly shaped masses in the Southeastern Desert (SED) of Egypt. The podiform chromities exhibit a wide range of compositions from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.67 to 0.88 in olivine-dunite, quite similar to that of the high-Cr chromitite, whereas it is around 0.62 in lherzolite-harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel have been reported for the first time from the Pan-African Proterozoic podiform chromitites. On the other hand, petrographic and geochemical evidence suggests that podiform chromitites in the SED of Egypt were formed as a result of crystallization of mafic melts, probably of boninitic composition, the boninitic parental magmas were probably produced by a second stage of melting above a subduction zone. Three types of chromite ores can be distinguished within the SED of Egypt: (a) sulphide-poor podiform ores; (b) brecciated ores; and (c) sulphide-rich ores. Two textural types of inclusions in chromite are distinguished: (1) primary silicate inclusions generally have high Mg-number (>96), Cr and Ni, and are dominated by pargasitic amphibole, forsterite, diopside, enstatite and Na-phlogopite. A diversity of primary and secondary platinum group minerals (PGM) is described from the chromitites, including alloys, sulphides, sulpharsenides and arsenides of Ru, Os, Ir, Rh, Ni, Cu, Fe and Co; (2) in addition to primary PGM and hydrous silicates, the fluids are of low to moderate salinity, sodium-dominated aqueous solutions with complex gas contents. Variable amounts of water, hydrogen, hydrocarbons, carbon dioxides and nitrogen have been determined in inclusion-rich samples. The chondrite-normalized PGE patterns of lherzolite-harzburgite and olivine-dunite have negative Ir and Pt, and positive Pd and Au anomalies. Chromitites are homo-geneous in composition but texturally zoned on a large scale. They carry elevated IPGE, manifested in numerous, primary and secondary PGM phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin M.S. (1955) Geology and mineral deposits of Umm Ras Sheet [J]. Geol. Surv. and Min. Res. Dep. Cairo, 78, 70–85.

    Google Scholar 

  • Arai S. (1992) Petrology of peridotites as a tool of insight into mantle processes: A review [J]. J. JPN Assoc. Mineral Petrol. Econ. Geol. 87, 351–363 (in Japanese with English Astract).

    Google Scholar 

  • Auge T.H. (1987) Chromite deposits in the northern Oman ophiolite: Mineralogical constraints [J]. Mineral Deposita. 22, 1–10.

    Article  Google Scholar 

  • Basta E.Z. and Hanafy M.A. (1970) Alteration of some Egyptian chromite [J]. Proc. Egypt Acad. Sci. 23, 1–7.

    Google Scholar 

  • Biino G.G. and Meisel T. (1994) Major, trace, noble and rare-earth element distribution in polymetamorphic ultramafic rocks (Aar Massif, Central Alps, Switzerland) [J]. Schweiz Mineral Petrogr Mitt. 74, 65–82.

    Google Scholar 

  • Bonavia F.F., Diella V.K., and Ferrario A.K. (1993) Precambrian podiform chromitites from Kenticha Hill, Southeastern Ethiopia [J]. Econ. Geol. 88, 198–202.

    Google Scholar 

  • Cassard D.K., Nicolas A.U., Rabinovitch M.H., Moutte J.D., Leblanc M.K., and Prinzhofer A.G. (1981) Structural classification of chromite pods in southern New Caledonia [J]. Econ. Geol. 76, 805–831.

    Google Scholar 

  • Dick H.J.B. (1974) Terrestrial nickel-iron from the Josephine peridotite, its geologic occurrence, associations and origin [J]. Earth and Planetary Science letters. 24, 291–298.

    Article  ADS  Google Scholar 

  • Dick H.J. and Bullen T.U. (1984) Chromain spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas [J]. Contributions to Mineralogy and Petrology. 86, 54–76.

    Article  Google Scholar 

  • Dixon T.H. (1979) The Evolution of Continental Crust in the Late Precambrian Egyptian Shield [D]. pp. 175. Ph. D. Thesis. Univ. California, San Diego.

    Google Scholar 

  • Dobrozemsky R. (1972) Experience with a computer program for residual gas analyses [J]. Journal of Vacuum Sciences and Technology. 9, 220–233.

    Article  Google Scholar 

  • Dobrozemsky R. (1990) Calibration of vacuum systems by gas quantities [J]. Vacuum. 41, 2109–2111.

    Article  Google Scholar 

  • Evstigneeva T. and Tarkian M. (1996) Synthesis of platinum-group minerals under hydrothermal conditions [J]. European Journal of Mineralogy. 8, 549–564.

    Google Scholar 

  • Ferrario A. and Garuti G. (1990) Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy) [J]. Mineralogy and Petrology. 41, 125–143.

    Article  Google Scholar 

  • Frost B.R. (1985) On the stability of sulfides, oxides, and native motive metals in serpentinite [J]. Journal of Petrology. 26, 31–63.

    Google Scholar 

  • Garuti G., Fershtater G., Bea F., Montero P., Pushkarev E., and Zaccarini F. (1997) Platinum-group elements as petrological indicators in maficultramafic complexes of the central and southern Urals: Preliminary results [J]. Tectonphysics. 276, 181–194.

    Article  Google Scholar 

  • Hassan M.A. and Hashad A.H. (1990) Precambrian of Egypt. In The Geology of Egypt (ed. R. Said) [M]. pp. 201–245. Balkema, Rotterdam.

    Google Scholar 

  • Harris D.C. and Cabri L.J. (1991) Nomenclature of platinum-group alloys: Review and revision [J]. Canadian Mineralogist. 29, 231–237.

    Google Scholar 

  • Hilmy M.E., Attia A.K., Boulis S., and Nand Ismail S. (1991) Mineralogy and geochemistry of chromite ores in Abu Dahr and El-Galala areas, Eastern Desert, Egypt [J]. Egypt Mineral. 3, 1–24.

    Google Scholar 

  • Johan Z.Y., Dunlop H.H., Le Bel L.K., Robert J.L., and Volfinger M.H. (1983) Origin of chromite deposits in ophiolitic complexes: Evidence for a volatile-and sodium-rich reducing fluid phase [J]. Fortschritte der Mineralogir. 61, 105–107.

    Google Scholar 

  • Kaaden G.V.D. (1964) The different concepts of the genesis of alpine type emplaced ultrabasic rocks. In Methods of Prospection for Chromite (ed. R. Woodtli) [C]. pp. 79–97. Organization Econ. Coop. Devel., Paris.

    Google Scholar 

  • Khudeir A.A. (1995) Chromain spinel-silicate chemistry in peridotite and orthopyroxenite relicts from ophiolitic serpentinites, Eastern Desert, Egypt [J]. Bull Fac Sci. Assiut Univ. 24, 221–261.

    Google Scholar 

  • Leblanc M.D. (1991) Platinum-group elements and gold in ophiolitic complexes: Distribution and fractionation from mantle to oceanic floor. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds. T. Peter et al.) [M]. pp. 231–260. Ministry of Petroleum and Minerals, Sultanate of Oman.

    Google Scholar 

  • Leblanc M.H. (1980) Chromite growth, dissolution and deformation from a morphological point of view: SEM investigations [J]. Mineral Deposita. 15, 201–210.

    Article  Google Scholar 

  • Leblanc M.L. and Violette J.F. (1983) Distribution of Al-rich and Cr-rich chromite pods in ophiolite peridotites [J]. Economic Geology. 78, 293–301.

    Google Scholar 

  • Leblanc M.G. and Ceuleneer G.S. (1992) Chromite crystallization in a multicellular magma flow: Evidence from a chromitite dike in the Oman ophiolite [J]. Lithos. 2, 231–257.

    Google Scholar 

  • Lehmann J.D. (1983) Diffusion between olivine and spinel: Application to geothermomerty [J]. Earth Planet. Sci. Lett. 64, 123–138.

    Article  ADS  Google Scholar 

  • Liipo J.G., Vuollo J.U., Nykanen V.R., Piirainen T.H., Pekkarinen L.H., and Tuokko I.F. (1995) Chromites from the early Proterozoic Outokumpujormua ophiolite belt: A comparison with chromites from Mesozoic ophiolite belt: A comparison with chromites from Mesozoic ophiolites [J]. Lithos. 36, 15–27.

    Article  Google Scholar 

  • Lorand J.P and Cottin J.Y. (1987) Na-Ti-Zr-H2O-rich mineral inclusions indicating post-cumulus chrome-spinel dissolution and recrystallization in the Western Laouni mafic intrusion, Algeria [J]. Contributions to Mineralogy and Petrology. 86, 251–263.

    Article  Google Scholar 

  • Lorand J.P. and Ceuleneer G.H. (1989) Silicate and base-metal sulfide inclusions in chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): A model forentrapment [J]. Lithos. 22, 173–190.

    Article  Google Scholar 

  • Mansour M.S., Bassiouny M.S., and El-Far D.M. (1956) Geology of Umm Salatit-El-Hisinat district [J]. Geo. Surv. and Min. Res. Dep. Cairo. 83, 88–102.

    Google Scholar 

  • McElduff B.F. and Stumpfl E.F. (1991) The chromite deposits of the Troodos complex, Cyprus: Evidence for the role of a fluid phase accompanying chromite formation [J]. Mineral Deposita. 26, 307–318.

    Article  Google Scholar 

  • McElduff B. and Stumpfl E.F. (1990) Platinum-group minerals from the Troodos Ophiolite, Cyprus [J]. Mineralogy and Petrology. 24, 211–232.

    Article  Google Scholar 

  • Naldrett A.J. and Duke J.M. (1980) Pt metals in magmatic sulfide ores: The occurrence of these metals is discussed in relation to the formation and importance of these pres [J]. Science. 208, 1417–1484.

    Article  ADS  Google Scholar 

  • Naldrett A.J., Hoffman E.L., Green A.H., Chou C.L., and Naldrett S.R. (1979) The composition of Ni-sulfide ores, with particular reference to their content of PGE and Au [J]. Can Mineral. 17, 403–415.

    Google Scholar 

  • Osman A. F., Mohamed F. H., and Amin B.M. (2001) Progressive serpentinization of some ultramafics in Semail Ophiolite, Mundassah Range, United Arab Emirates. M.E.R.C. Ain Shams Univ. [J]. Earth Science. 15, 32–48.

    Google Scholar 

  • Pederson R.B., Johannesen G.M., and Boyd R. (1993) Stratiform platinum-group element mineralizations in the ultramafic cumulates of the Leka Ophiolite Complex, Central Norway [J]. Econ. Geol. 88, 782–780.

    Google Scholar 

  • Prichard H.M., Ixer R.A., Lord R.A., Maynard J.N., and Williams N.H. (1994) Assemblages of platinum-group minerals and sulfides in silicate lithologies and chromite-rich rocks within the Shetland ophiolite [J]. Canadian Mineralogist. 32, 271–294.

    Google Scholar 

  • Prichard H.M., Neary C.R., and Potts P.J. (1986) Platinum-group minerals in the Shetland ophiolite. In Metallogeny of Basic and Ultrabasic Rocks (eds. M.P. Gallagher et al.) [C]. pp. 395–414. The Institution of Mining and Metallurgy, London.

    Google Scholar 

  • Roberts S.R. (1988) Ophioitic chromitite formation: A marginal basin phenomenon [J]. Economic Geology. 83, 1034–1036.

    Google Scholar 

  • Saleh E.A and Ibrahim M.E. (1998) Geology and geochemistry of a chromite occurrence at W. Biam-W. Murra area, South Eastern Desert, Egypt. M.E.R.C. Ain Shams Univ. [J]. Earth Sci. Ser. 12, 219–229.

    Google Scholar 

  • Shepherd T.J. (1981) Temperature-programmable, heating-freezing stage for microthermometric analysis of fluid inclusions [J]. Economic Geology. 76, 1244–1247.

    Google Scholar 

  • Stevens R.E. (1944) Composition of same chromites of the Western Hemisphere [J]. Am. Min. 29, 1–34.

    Google Scholar 

  • Talkington R.W. and Watkinson D.H. (1986) Whole rock platinum-group element trends in chromite-rich rocks in ophiolitic and stratiform igneous complexes. In Metllogeny of Basic and Ultrabasic Rocks (eds. M.P. Gallagher et al.) [C]. pp. 427–440. The Institution of Mining and Metallurgy, London.

    Google Scholar 

  • Thayer T.P. (1966) Serpentinization considered as a constant volume metasomatic process [J]. American Mineralogist. 51, 685–710.

    Google Scholar 

  • Thayer T.P. (1969) Gravity differentiation and magmatic reemplacement of podiform chromite deposits [J]. Economic Geology. 4, 132–146.

    Google Scholar 

  • Thayer T.P. (1970) Chormite segregations as petrogenetic indicators [J]. Geol. Soc. South Africa, Spec. Pub. 1, 380–390.

    Google Scholar 

  • Thayer T.P. and Lipin B.R. (1978) A geological analysis of world chromite production to the year 2000 A.D.: A.I.M.E. [J]. Econ. Council, Ann. Mtg. Proc. 107, 143–152.

    Google Scholar 

  • Torres-Ruiz J.C., Garuti G.K., Gazzotti M.F., Gervilla F., and Hach-Ali P.F. (1996) Platinum-group minerals in chromities from the Ojen lherzolite massif (Serrania de Ronda, Betic Cordillera, Spain) [J]. Mineralogy and Petrology. 56, 25–50.

    Article  Google Scholar 

  • Zhou M.F., Robinson P.T., and Bai W.J. (1994) Formation of podiform chromities by melt/rock interaction in the upper mantle [J]. Mineralium Deposita. 27, 192–199.

    Article  Google Scholar 

  • Zhou M.F., Robinson P.T., and Bai W.J. (1996) Formation of podiform chromite deposits by the melt/rock interaction in the upper mantle [J]. Mineralium Deposita. 29, 98–101.

    Google Scholar 

  • Zhou M.F. and Robinson P.T. (1997) Origin and tectonic environment of podiform chromite deposits [J]. Econ Geol. 92, 259–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, G.M. The chromite deposits associated with ophiolite complexes, Southeastern Desert, Egypt: Petrological and geochemical characteristics and mineralization. Chin. J. of Geochem. 25, 307–317 (2006). https://doi.org/10.1007/s11631-006-0307-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-006-0307-5

Key words

Navigation