Skip to main content
Log in

Heat Storage Performance of PCM in a Novel Vertical Pointer-Shaped Finned Latent Heat Tank

  • Special Column: Recent Advances in PCMs as Thermal Energy Storage in Energy Systems
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The heat storage performance of latent heat storage systems is not good due to the poor thermal conductivity of phase change materials. In this paper, a new type of pointer-shaped fins combining rectangular and triangular fins has been employed to numerically simulate the melting process in the heat storage tank, and the fin geometry parameter effects on heat storage performance have been studied. The results indicate that compared with the bare tube and the rectangular finned tank, the melting time of the phase change material in the pointer-shaped finned tank is reduced by 64.2% and 15.1%, respectively. The closer the tip of the triangular fin is to the hot wall, the better the heat transfer efficiency. The optimal height of the triangular fin is about 8 mm. Increasing the number of fins from 4 to 6 and from 6 to 8 reduces the melting time by 16.0% and 16.7% respectively. However, increasing the number of fins from 8 to 10 only reduces the melting time by 8.4%. When the fin dimensionless length is increased from 0.3 to 0.5 and from 0.5 to 0.7, the melting time is shortened by 17.5% and 13.0%. But the melting time is only reduced by 2.9% when the dimensionless fin length is increased from 0.7 to 0.9. For optimising the design of the thermal storage system, the results can provide a reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A mush :

mushy zone constant

B :

height of heat storage tank/mm

c p :

specific heat capacity/J·kg−1·K−1

F :

length of the fin/mm

\({\vec g}\) :

gravity/m·s−2

H :

total enthalpy/J·kg−1

ΔH :

latent heat enthalpy/J·kg−1

h :

sensible enthalpy/J·kg−1

k :

thermal conductivity/W·m−1·K−1

L :

latent heat/J·kg−1

Δl :

dimensionless length of the fin

N :

number of the fin

P :

pressure/Pa

Q :

total heat storage/kJ

R :

outer tube radius/mm

r :

inner tube radius/mm

\({\vec S}\) :

Darcy’s law damping term

T :

temperature/K

t :

time/s

V PCM :

volume of the phase change material/m3

\({\vec V}\) :

velocity vector/m·s−1

w :

height of the triangular fin/mm

Z :

distance between the tip of the triangular fin and the hot wall/mm

HTF:

heat transfer fluid

LHTES:

latent heat thermal energy storage

PCM:

phase change material

PSF:

pointer-shaped fin

β :

thermal expansion coefficient/K−1

δ :

inner tube wall thickness/mm

λ :

melt fraction

μ :

dynamic viscosity/Pa·s

ρ :

density/kg·m−3

φ :

average heat storage rate/J·s−1

0:

initial

ave:

average

l:

liquidus

lh:

latent heat

ref:

reference

s:

solidus

sh:

sensible heat

References

  1. Zhao Y.L., Song J., Liu M., et al., Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials. Renewable Energy, 2022, 186: 431–456.

    Article  Google Scholar 

  2. Dong Y., Wang F.Q., Yang L.W., et al., Thermal performance analysis of PCM capsules packed-bed system with biomimetic leaf hierarchical porous structure. Journal of Thermal Science, 2021, 30: 1559–1571.

    Article  CAS  ADS  Google Scholar 

  3. Ghorbaei S.Z., Ebrahim H.A., Comparison of kinetics and thermochemical energy storage capacities of strontium oxide, calcium oxide, and magnesium oxide during carbonation reaction. Renewable Energy, 2022, 184: 765–775.

    Article  Google Scholar 

  4. Liu L.K., Su D., Tang Y.J, et al., Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 2016, 62: 305–317.

    Article  CAS  Google Scholar 

  5. Mao Q.J., Chen H.Z., et al., Energy storage performance of a PCM in the solar storage tank. Journal of Thermal Science, 2019, 2: 195–203.

    Article  ADS  Google Scholar 

  6. Mao Q.J., Li Y., Zhang Y.M., et al., Numerical and experimental investigation on heat transfer performance of a solar single storage tank. Journal of Thermal Science, 2021, 5: 1596–1606.

    Article  ADS  Google Scholar 

  7. Mao Q.J, Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant. Renewable & Sustainable Energy Reviews, 2016, 59: 320–327.

    Article  Google Scholar 

  8. Kong X.F., Jiang L.N., Yuan Y., et al., Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation. Energy, 2022, 239: 122451.

    Article  CAS  Google Scholar 

  9. Baruah J.S., Athawale V., Rath P., et al., Melting and energy storage characteristics of macro-encapsulated PCM-metal foam system. International Journal of Heat and Mass Transfer, 2022, 182: 121993.

    Article  Google Scholar 

  10. Li C.C., Zhao X.B., Zhang B., et al., Stearic acid/copper foam as composite phase change materials for thermal energy storage. Journal of Thermal Science, 2020, 29: 492–502.

    Article  CAS  ADS  Google Scholar 

  11. Jain A., Parhizi M., Theoretical analysis of phase change heat transfer and energy storage in a spherical phase change material with encapsulation. International Journal of Heat and Mass Transfer, 2022, 185: 122348.

    Article  Google Scholar 

  12. Wijesuriya S., Tabares-Velasco P.C., Empirical validation and comparison of methodologies to simulate micro and macro-encapsulated PCMs in the building envelope. Applied Thermal Engineering, 2021, 188: 116646.

    Article  Google Scholar 

  13. Benner J.Z., Shannon R.C., Wu W.T., et al., The effect of micro-encapsulation on thermal characteristics of metallic phase change materials. Applied Thermal Engineering, 2022, 207: 118055.

    Article  CAS  Google Scholar 

  14. Elbahjaoui R., Improvement of the thermal performance of a solar triple concentric-tube thermal energy storage unit using cascaded phase change materials. Journal of Energy Storage, 2021, 42: 103047.

    Article  Google Scholar 

  15. Wang L.M., Wang C., Guo Y.L., et al., Novel rotary regenerative heat exchanger using cascaded phase change material capsules. Applied Thermal Engineering, 2021, 188: 116619.

    Article  Google Scholar 

  16. Mao Q.J., Zhang Y.M., Thermal energy storage performance of a novel three-PCM cascade tank in a high-temperature packed bed system. Renewable Energy, 2020, 152: 110–119.

    Article  CAS  Google Scholar 

  17. Mao Q.J., Hu X.L., Li T., Study on heat storage performance of a novel vertical shell and multi-finned tube tank. Renewable Energy, 2022, 193: 76–88.

    Article  Google Scholar 

  18. Mao Q.J., Li Y., Li G.Q., et al., Study on the influence of tank structure and fin configuration on heat transfer performance of phase change thermal storage system. Energy, 2021, 235: 121382.

    Article  Google Scholar 

  19. He W., Zhang J.F., Li H.L., et al., Optimal thermal management of server cooling system based cooling tower under different ambient temperatures. Applied Thermal Engineering, 2022, 207: 118176.

    Article  Google Scholar 

  20. Dong Y., Wang F.Q., Zhang Y.Q., et al., Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure. Energy, 2022, 238: 121830.

    Article  Google Scholar 

  21. Wang F.Q., Zhang G.L., Shi X.H., et al., Biomimetically calabash-inspired phase change material capsule: Experimental and numerical analysis on thermal performance and flow characteristics. Journal of Energy Storage, 2022, 52: 104859.

    Article  Google Scholar 

  22. Hasnain F.U., Irfan M., Khan M.M., et al., Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications. Journal of Energy Storage, 2021, 38: 102513.

    Article  Google Scholar 

  23. Yao S.G., Huang X.Y., Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system. Energy, 2021, 227: 120527.

    Article  Google Scholar 

  24. Modi N., Wang X.L., Negnevitsky M., et al., Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system. Solar Energy, 2021, 230: 333–344.

    Article  ADS  Google Scholar 

  25. Tiari S., Hockins A., An experimental study on the effect of annular and radial fins on thermal performance of a latent heat thermal energy storage unit. Journal of Energy Storage, 2021, 44: 103541.

    Article  Google Scholar 

  26. Guo J.F., Liu Z., Yang B., et al., Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube. Renewable Energy, 2022, 183: 406–422.

    Article  Google Scholar 

  27. Sodhi G.S., Muthukumar P., Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution. Renewable Energy, 2021, 171: 299–314.

    Article  Google Scholar 

  28. Ahmadian-Elmi M., Mashayekhi A., Nourazar S.S., et al., A comprehensive study on parametric optimization of the pin-fin heat sink to improve its thermal and hydraulic characteristics. International Journal of Heat and Mass Transfer, 2021, 180: 121797.

    Article  Google Scholar 

  29. Ranjbar A.M., Pouransari Z., Siavashi M., Improved design of heat sink including porous pin fins with different arrangements: A numerical turbulent flow and heat transfer study. Applied Thermal Engineering, 2021, 198: 117519.

    Article  Google Scholar 

  30. Sertkaya A.A., Ozdemir M., Canli E., Effects of pin fin height, spacing and orientation to natural convection heat transfer for inline pin fin and plate heat sinks by experimental investigation. International Journal of Heat and Mass Transfer, 2021, 177: 121527.

    Article  Google Scholar 

  31. Duan J., Xiong Y.L., Yang D., Study on the effect of multiple spiral fins for improved phase change process. Applied Thermal Engineering, 2020, 169: 114966.

    Article  Google Scholar 

  32. Lu B.H., Zhang Y.X., Sun D., et al., Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit. Applied Thermal Engineering, 2021, 187: 116575.

    Article  CAS  Google Scholar 

  33. Mehta D.S., Vaghela B., Rathod M.K., et al., Thermal performance augmentation in latent heat storage unit using spiral fin: An experimental analysis. Journal of Energy Storage, 2020, 31: 101776.

    Article  Google Scholar 

  34. Ghandouri I.E., Maakoul A.E., Saadeddine S., et al., Thermal performance of a corrugated heat dissipation fin design: A natural convection numerical analysis. International Journal of Heat and Mass Transfer, 2021, 180: 121763.

    Article  Google Scholar 

  35. Yu C., Wu S.C., Huang Y.P., et al., Charging performance optimization of a latent heat storage unit with fractal tree-like fins. Journal of Energy Storage, 2020, 30: 101498.

    Article  Google Scholar 

  36. Ren F., Du J., Cai Y.F., et al., Study on thermal performance of a new optimized snowflake longitudinal fin in vertical latent heat storage. Journal of Energy Storage, 2022, 50: 104165.

    Article  Google Scholar 

  37. Ge R.H., Humbert G., Martinez R., et al., Additive manufacturing of a topology-optimised multi-tube energy storage device: Experimental tests and numerical analysis. Applied Thermal Engineering, 2020, 180: 115878.

    Article  CAS  Google Scholar 

  38. Pizzolato A., Sharma A., Ge R.H., et al., Maximization of performance in multi-tube latent heat storage-Optimization of fins topology, effect of materials selection and flow arrangements. Energy, 2020, 203: 114797.

    Article  Google Scholar 

  39. Pizzolato A., Sharma A., Maute K., et al., Multi-scale topology optimization of multi-material structures with controllable geometric complexity-Applications to heat transfer problems. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112552.

    Article  MathSciNet  ADS  Google Scholar 

  40. Mghari H.E., Idrissi A., Amraoui R.E., Cascaded latent heat thermal energy storage device with longitudinal fins: Numerical investigation of melting process and thermal performance analysis. Journal of Energy Storage, 2022, 53: 105199.

    Article  Google Scholar 

  41. Liu Y.K., Tao Y.B., Experimental and numerical investigation of longitudinal and annular finned latent heat thermal energy storage unit. Solar Energy, 2022, 243: 410–420.

    Article  ADS  Google Scholar 

  42. Abdulateef A.M., Mat S., Abdulateef J., et al., Geometric and design parameters of fins employed for enhancing thermal energy storage systems: A review. Renewable and Sustainable Energy Reviews, 2018, 82: 1620–1635.

    Article  CAS  Google Scholar 

  43. Patel J.R., Rathod M.K., Sheremet M., Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin. Journal of Energy Storage, 2022, 50: 1509–1520.

    Article  Google Scholar 

  44. Mahdi M.S., Hasan A.F., Mahood H.B., et al., Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit. Journal of Energy Storage, 2019, 23: 456–468.

    Article  Google Scholar 

  45. Patel J.R., Rathod M.K., Elavarasan R.M., et al., Influence of longitudinal fin arrangement on the melting and solidification inside the triplex tube latent heat thermal storage system. Journal of Energy Storage, 2022, 46: 103778.

    Article  Google Scholar 

  46. Li H.Y., Hu C.Z., He Y.C., et al., Influence of fin parameters on the melting behavior in a horizontal shell-and-tube latent heat storage unit with longitudinal fins. Journal of Energy Storage, 2021, 34: 102230.

    Article  Google Scholar 

  47. Kirincic M., Trp A., Lenic K., Numerical evaluation of the latent heat thermal energy storage performance enhancement by installing longitudinal fins. Journal of Energy Storage, 2021, 42: 103085.

    Article  Google Scholar 

  48. Alzoubi M.A., Nie-Rouquette A., Sasmito A.P., Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: Experiments and model validation. International Journal of Heat and Mass Transfer, 2018, 126: 740–752.

    Article  Google Scholar 

  49. Niezgoda-Żelasko B., The enthalpy-porosity method applied to the modelling of the ice slurry melting process during tube flow. Procedia Engineering, 2016, 157: 114–121.

    Article  Google Scholar 

  50. Pahamli Y., Hosseini M.J., Ardahaie S.S., et al., Improvement of a phase change heat storage system by blossom-shaped fins: Energy analysis. Renewable Energy, 2022, 182: 192–215.

    Article  Google Scholar 

  51. Abdi A., Martin V., Chiu J.N.W., Numerical investigation of melting in a cavity with vertically oriented fins. Applied Energy, 2019, 235: 1027–1040.

    Article  ADS  Google Scholar 

  52. Khan L.A., Khan M.M., Role of orientation of fins in performance enhancement of a latent thermal energy storage unit. Applied Thermal Engineering, 2020, 175: 115408.

    Article  Google Scholar 

  53. Fadl M., Eames P.C., Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Applied Thermal Engineering, 2019, 151: 90–99.

    Article  CAS  Google Scholar 

  54. Mat S., Al-Abidi A.A., Sopian K., et al., Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energy Conversion and Management, 2013, 74: 223–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National Natural Science Foundation of China (Grant No. 51876147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Q., Zhu, Y. & Li, T. Heat Storage Performance of PCM in a Novel Vertical Pointer-Shaped Finned Latent Heat Tank. J. Therm. Sci. 33, 422–434 (2024). https://doi.org/10.1007/s11630-024-1910-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1910-7

Keywords

Navigation