Skip to main content
Log in

A Comprehensive Review of Thermal Performance Improvement of High-Temperature Heat Pipes

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Energy efficiency issues are being focused on the growing concern of global warming and environmental pollution. The high-temperature heat pipe (HTHP) is an effective and environmental-friendly heat transfer device employed in many industries, including solar power generation, high-temperature flue gas waste heat recovery, industrial furnaces, nuclear industries, and aviation. As a critical factor in HTHPs, thermal performance is mainly introduced in the entire paper. To date, most reviews have been published concerning one or several application scenarios. However, to the best of authors’ knowledge, it is hard to find a review discussing how to improve the thermal performance of HTHPs comprehensively. First, the impact on the performance of three main components of HTHPs over the past 30 years is introduced: the working fluid, the HTHP structure, and the wick structure. Herein, it is a considerable review of the optimal operating conditions for each direction, and we expect this paper contribute to improving the thermal performance of HTHPs. Then, current numerical simulations and theoretical research on the heat transfer limit of HTHPs are recommended. The significant hypotheses used in numerical simulations and the present theoretical studies are compiled here. Finally, some potential future directions and tentative suggestions for HTHP research are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS:

adiabatic section

A w :

cross section area of wicks/m2

CS:

condenser section

D :

characteristic length of the HTHP/m

d :

diameter of the vapor channel/m

D I :

inner diameter/m

D O :

outer diameter/m

D v :

steam power coefficient

ES:

evaporator section

F v :

steam friction coefficient

g :

acceleration of gravity/m2·s−1

HTHP:

high-temperature heat pipe

h :

characteristic length of the wick structure/m

h fg :

latent heat of vaporization/kJ·kg−1

K :

permeability/m2

k :

ratio of specific heats of steam

L :

length of the HTHP/m

l eff :

effective length of the HTHP/m

P :

pressure/Pa

r c,I :

the effective capillary radiuses of the inner wall/m

r c,O :

the effective capillary radiuses of the outer wall/m

R v :

gas constant

ST:

startup time

T :

temperature/K

TR:

thermal resistance

TRC:

thermal response characteristics

V a :

the speed of sound in steam/m·s−1

η :

viscosity/Pa·s

θ :

inclination angle/(°)

μ :

dynamic viscosity/Pa·s

ρ :

density/kg·m−3

σ :

surface tension coefficient/N·m−1

i :

ith position node

j :

jth time node

l:

liquid phase

v:

steam phase

0:

the property at the end of the evaporator section

References

  1. Gaugler R., Heat transfer device. US Patent, 1944.

  2. Institute of Mechanics C.A.S., The sodium heat pipe ran successfully. Advances in Mechanics, 1972, 09: 38. (in Chinese)

    Google Scholar 

  3. Li W., Xiao X., Zhou S., et al., Research progress on high temperature heat pipes and application. Modern Chemical Industry, 2020, 40: 15–18, 23. (in Chinese)

    CAS  Google Scholar 

  4. Ma T., Zhu Y., Chen H., et al., Frozen start-up performance of a high temperature special shaped heat pipe suitable for solar thermochemical reactors. Applied Thermal Engineering, 2016, 109: 591–599.

    Article  CAS  Google Scholar 

  5. Yang L., Ling X., Peng H., et al., Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of “flat-front” Startup model. Energy, 2019, 183: 936–945.

    Article  Google Scholar 

  6. Wang X., Ma T., Zhu Y., et al., Experimental investigation on startup and thermal performance of a high temperature special-shaped heat pipe coupling the flat plate heat pipe and cylindrical heat pipes. Experimental Thermal and Fluid Science, 2016, 77: 1–9.

    Article  Google Scholar 

  7. Jang J.H., An analysis of startup from the frozen state and transient performance of heat pipes. Georgia Institute of Technology, 1988.

  8. Wang C., Chen J., Qiu S., et al., Performance analysis of heat pipe radiator unit for space nuclear power reactor. Annals of Nuclear Energy, 2017, 103: 74–84.

    Article  CAS  Google Scholar 

  9. Zhang W., Yao H., Wang Y., et al., Experimental investigation on start-up and heat transfer performance of the high-temperature heat pipe receiver with an ellipse-concave plate absorber. Case Studies in Thermal Engineering, 2021, 28: 101604.

    Article  Google Scholar 

  10. Wang C., Tang S., Liu X., et al., Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery. Applied Thermal Engineering, 2020, 175: 115299.

    Article  CAS  Google Scholar 

  11. Yan X., Duan Y., Ma C., et al., Construction of sodium heat-pipe furnaces and the isothermal characteristics of the furnaces. International Journal of Thermophysics, 2011, 32: 494–504.

    Article  ADS  CAS  Google Scholar 

  12. Ponnappan R., Studies on the startup transients and performance of a gas loaded sodium heat pipe. University of Dayton, 1988.

  13. Paripatyadar S., Richardson J., Cyclic performance of a sodium heat pipe, solar reformer. Solar Energy, 1988, 41: 475–485.

    Article  ADS  CAS  Google Scholar 

  14. Rama N., Manoj R., Kumar M., et al., Performance evaluation of sodium heat pipe through parameteric studies. Frontiers in Heat Pipes, 2013, 3: 043003.

    Google Scholar 

  15. Chu S., Bai F., Cui Z., et al., Experimental investigation on thermal performance of a heat pipe pressurized air receiver. Applied Thermal Engineering. 2020, 165: 114551.

    Article  Google Scholar 

  16. Dussinger P., Anderson W., Sunada E., Design and testing of titanium/cesium and titanium/potassium heat pipes. Proceedings of the 2005 IECEC, 15–18 August, 2005, pp. 15–18.

  17. Guo Y., Su Z., Li Z., et al., The super thermal conductivity model for high-temperature heat pipe applied to heat pipe cooled reactor. Frontiers in Energy Research, 2022, 10: 819033.

    Article  Google Scholar 

  18. Li H., Ouyang Z., Tian X., et al., The development of high temperature heat-pipe transient model for system analysis of heat pipe cooled microreactor. Progress in Nuclear Energy, 2022, 146: 104145.

    Article  CAS  Google Scholar 

  19. Hu C., Zhang X., Wang H., et al., Analysis on start up and heat transfer performance of mercury heat pipe under alternating heating power. E3S Web of Conferences, 2021, 248: 01004.

    Article  Google Scholar 

  20. Jung E., Boo J., Thermal numerical model of a high temperature heat pipe heat exchanger under radiation. Applied Energy, 2014, 135: 586–596.

    Article  ADS  CAS  Google Scholar 

  21. Hansen G., Næss E., Kristjansson K., Analysis of a vertical flat heat pipe using potassium working fluid and a wick of compressed nickel foam. Energies, 2016, 9: 170.

    Article  Google Scholar 

  22. Huang J., Wang C., Guo K., et al., Heat transfer analysis of heat pipe cooled device with thermoelectric generator for nuclear power application. Nuclear Engineering and Design, 2022, 390: 111652.

    Article  CAS  Google Scholar 

  23. Yang L., Zhou R., Jin X., et al., Experimental investigate on thermal properties of a novel high temperature flat heat pipe receiver in solar power tower plant. Applied Thermal Engineering, 2016, 109: 610–618.

    Article  CAS  Google Scholar 

  24. Wang C., Liu X., Liu M., et al., Experimental study on heat transfer limit of high temperature potassium heat pipe for advanced reactors. Annals of Nuclear Energy, 2021, 151: 107935.

    Article  CAS  Google Scholar 

  25. Tian Z., Liu X., Wang C., et al., Experimental investigation on the heat transfer performance of high-temperature potassium heat pipe for nuclear reactor. Nuclear Engineering and Design, 2021, 378: 111182.

    Article  CAS  Google Scholar 

  26. Jean M., Mohamed S., A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state. International Journal of Heat and Mass Transfer, 1996, 39: 3767–3780.

    Article  Google Scholar 

  27. Li G., Tu J., Working fluid choicing for high temperature heat pipe. Energy Conservation Technology, 2001, 19(01): 42–44. (in Chinese)

    Google Scholar 

  28. Feng T., Theoretical and experimental research on liquid metal high temperature heat pipe. Zhejiang University, 1998.

  29. Silverstein C., Effective thermal conductivity of heat pipes. 6th Joint Thermophysics and Heat Transfer Conference, 1994.

  30. Ding L., Zhang H., Xu H., et al., Selection of working fluids for high temperature heat pipes used in dish solar receivers. East China Electric Power, 2009, 37: 632–635. (in Chinese)

    Google Scholar 

  31. Silverstein C., Correlation of heat pipe heat transport limits with vapor pressure. 20th Thermophysics Conference, 1985.

  32. Qu W., Wang H., Compatibility and heat transfer of high and super high temperature heat pipes. CIESC Journal, 2011, 62: 77–81. (in Chinese)

    CAS  Google Scholar 

  33. Qu W., Wang H., Duan Y., Startup characteristics and heat transfer limits of high and super high temperature heat pipes. Journal of Engineering Thermophysics, 2011, 32: 1345–1348. (in Chinese)

    Google Scholar 

  34. Hu C., Zhang X., Wang H., et al., Analysis on start up and heat transfer performance of mercury heat pipe under alternating heating power. E3S Web of Conferences, 2021, 248: 01004.

    Article  Google Scholar 

  35. Guo Y., Chen H., Yuan D., et al., Startup and heat transfer performance of medium temperature cesium heat pipe. Chemical Industry and Engineering Progress, 2021, 40: 5981–5987. (in Chinese)

    CAS  Google Scholar 

  36. Meng Q., Preliminary experimental study of high temperature molten salt heat pipe. Beijing University of Technology, 2015.

  37. Han Y., Chai B., Wei G., et al., Test study for starting performance of high-temperature gravity potassium heat pipes with and without wick. Atomic Energy Science and Technology, 2019, 53: 38–44. (in Chinese)

    Google Scholar 

  38. Boo J., Kim S., Kang Y., An experimental study on a sodium loop-type heat pipe for thermal transport from a high-temperature solar receiver. Energy Procedia, 2015, 69: 608–617.

    Article  CAS  Google Scholar 

  39. Yang H., Wang C., Zhang D., et al., Parameter sensitivity study on startup characteristics of high temperature potassium heat pipe. Nuclear Engineering and Design, 2022, 392:111754.

    Article  CAS  Google Scholar 

  40. Ji Y., Wu M., Feng Y., et al., An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe. International Journal of Heat and Mass Transfer, 2020, 149: 119198.

    Article  CAS  Google Scholar 

  41. Boo J., Park S., Isothermal characteristics of a rectangular parallelepiped sodium heat pipe. Journal of Mechanical Science and Technology, 2005, 19: 1044–1051.

    Article  Google Scholar 

  42. Zhao W., Zhuang J., Zhang H., Influence of the evaporator length and liquid-filled content on the startup operation of the high temperature sodium heat pipes. Chemical Engineering & Machinery, 2003, 30(05): 259–262. (in Chinese)

    CAS  Google Scholar 

  43. Nina H., Simon U., Michael B., Ceramic heat pipes for high temperature application. Energy Procedia, 2017, 120: 140–148.

    Article  Google Scholar 

  44. Ji Y., Yuan D., Che Z., et al., Study on adaptive heat transfer performance of high temperature heat pipe. Annals of Nuclear Energy, 2021, 163: 108536.

    Article  CAS  Google Scholar 

  45. Tian Z., Zhang J., Wang C., et al., Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system. Applied Thermal Engineering, 2022, 209: 118296.

    Article  CAS  Google Scholar 

  46. Larkin B., An experimental study of the two-phase thermosyphon tube. Trans CSME, 1971, 14(B-6): I, VIII.

    Google Scholar 

  47. Imura H., Optimum fill quantity of liquid in two-phase closed thermosyphons. Technical Report, Kumamoto University, 1980, 29: 9–18.

  48. Feng T., Tu C., Study on compatibility between liquid metal high temperature heat pipes and working fluids. Energy Engineering, 1997, 02: 16–18. (in Chinese)

    Google Scholar 

  49. Ewell G., Basiulis A., Lamp T., Reliability of low-cost liquid metal heat pipes. 3rd International Heat Pipe Conference, 22–24 May, 1978, 437: 297–302.

    ADS  Google Scholar 

  50. Yamamoto T., Tanaka Y., Sasaki M., et al., Study on life of sodium heat pipe. Advances in Heat Pipe Technology, 07–10 September, 1982, pp. 389–398.

  51. Chen Z., Zou D., Accelerated service life testing and analysis of heat pipe for high temperature. Journal of Iron and Steel Research, 1986, 06(02): 79–84. (in Chinese)

    Google Scholar 

  52. Sena J.T., Merrigan M.A., Niobium-1% Zirconium/ potassium life-test heat pipe design and testing. 28th Aerospace Sciences Meeting, 08–11 January, 1990, pp. 0063.

  53. Yu Z., Liu X., Zhu D., et al., Failure analysis on high-temperature heat pipe. Journal of Jiangsu University of Science and Technology, 1997, 11(02): 46–50. (in Chinese)

    Google Scholar 

  54. Tu S., Zhang H., Zhuang J., The strength and life of heat pipe equipment. Pressure Vessel Technology, 1997, 14(02): 30–37, 90. (in Chinese)

    Google Scholar 

  55. Feng T., Theoretical and experimental research on liquid metal high temperature heat pipe. Zhejiang University, 1998. (in Chinese)

  56. Jin F., Song H., Development of porous isothermal sodium heat pipe for high temperature. Control Engineering of China, 1986, 02: 1–5. (in Chinese)

    Google Scholar 

  57. Busse C., Heat pipe science, advances in heat pipe science and technology. International Academic Publishers, 1992.

  58. Tu S., Zhang H., Zhou W., Corrosion failures of high temperature heat pipes. Engineering Failure Analysis, 1999, 6: 363–370.

    Article  CAS  Google Scholar 

  59. Meisel P., Lippmann W., Hurtado A., Ceramic high-temperature heat pipes. International Conference on Nuclear Engineering, 2014, 45950: V005T016A008.

    Google Scholar 

  60. Guo H., Guo Q., Yan X., et al., Experimental investigation on heat transfer performance of high-temperature thermosyphon charged with sodium-potassium alloy. Applied Thermal Engineering, 2018, 139: 402–408.

    Article  CAS  Google Scholar 

  61. Zhang X., He K., Yang Q., et al., Analysis on heat transfer and start-up performance of mercury heat pipe. E3S Web of Conferences, 2021, 245: 03012.

    Article  CAS  Google Scholar 

  62. Sun H., Liu X., Liao H., et al., Experiment study on thermal behavior of a horizontal high-temperature heat pipe under motion conditions. Annals of Nuclear Energy, 2022, 165: 108760.

    Article  CAS  Google Scholar 

  63. Hu C., Yu D., He M., et al., Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model. Nuclear Science and Techniques, 2021, 32: 1–14.

    Article  Google Scholar 

  64. Xie G., Ji T., Sunden B., et al., Investigation on thermal performance of a high-temperature heat-pipe thermal protection structure. Journal of Engineering Thermophysics, 2016, 25: 359–376.

    Article  Google Scholar 

  65. Lu Q., Han H., Hu L., et al., Preparation and testing of nickel-based superalloy/sodium heat pipes. Heat and Mass Transfer, 2017, 53: 3391–3397.

    Article  ADS  CAS  Google Scholar 

  66. Ling J., Cao Y., Chang W., Analyses of radially rotating high-temperature heat pipes for turbomachinery applications. Journal of Engineering for Gas Turbines and Power, 1999, 121: 306–312.

    Article  Google Scholar 

  67. Ling J., Cao Y., Lopez A., Experimental investigations of radially rotating miniature high-temperature heat pipes. Journal of Heat Transfer, 2001, 123: 113–119.

    Article  CAS  Google Scholar 

  68. Guo Q., Guo H., Yan X., et al., Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe. Heat Transfer Engineering, 2017, 39: 1627–1635.

    Article  Google Scholar 

  69. Zhao W., Transient temperature effect of high temperature heat pipe. Industrial Furnace, 2003, 03: 8–10. (in Chinese)

    Google Scholar 

  70. Zhang K., Le K., Yan X., et al., Study on isothermal performance of gravity cesium heat pipe. Acta Metrologica Sinica, 2020, 41: 26–31. (in Chinese)

    Google Scholar 

  71. Shen Y., Zhang H., Xu H., et al., Simulation and experimental analysis on heat transfer characteristics of alkali metal heat pipe. Acta Energiae Solaris Sinica, 2016, 37: 644–650. (in Chinese)

    Google Scholar 

  72. Faghri A., Performance characteristics of a concentric annular heat pipe: Part 2-Vapor flow analysis. Journal of Heat Transfer, 1989, 111(04): 6103698.

    Google Scholar 

  73. Zhao J., Yuan D., Tang D., et al., Heat transfer characteristics of a concentric annular high temperature heat pipe under anti-gravity conditions. Applied Thermal Engineering, 2019, 148: 817–824.

    Article  Google Scholar 

  74. Zhao W., Zhuang J., Zhang H., Experimental study of shaped high-temperature heat-pipe fins. Journal of Engineering for Thermal Energy and Power, 2004, 19(04): 408–410, 440–441. (in Chinese)

    Google Scholar 

  75. Wu M., Ji Y., Feng Y., et al., Experimental investigation on the effects of inclination angle on heat transfer performance of a liquid metal high-temperature oscillating heat pipe. Heat Transfer Summer Conference, 2021, 84874: V001T008A010.

    Google Scholar 

  76. Wang C., Zhang L., Liu X., et al., Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application. Annals of Nuclear Energy, 2020, 136: 107051.

    Article  CAS  Google Scholar 

  77. Kang S., Yeh H., Tsai M., et al., Manufacture and test of a high temperature heat pipe. Journal of Applied Science and Engineering, 2019, 22: 493–499.

    Google Scholar 

  78. Kotani K., Tanihiro Y., Sumida I., Hot spot of a sodium heat pipe lined with multi-layered wire netting, upon approach to pressure drop limit. Journal of Nuclear Science and Technology, 1974, 11(02): 72–74.

    Article  ADS  CAS  Google Scholar 

  79. Yin L., Liu H., Liu W., Capillary character and evaporation heat transfer in the wicks of high temperature liquid metal heat pipe. Applied Thermal Engineering, 2020, 175: 115284.

    Article  CAS  Google Scholar 

  80. Ding L., Zhang H., Xu H., et al., Startup characteristics of high temperature heat pipe in solar power receiver. Journal of Nanjing Tech University (Natural Science Edition), 2009, 31: 79–85. (in Chinese)

    Google Scholar 

  81. Yamawaki S., Yoshida T., Taki M., et al., Fundamental heat transfer experiments of heat pipes for turbine cooling. Journal of Engineering for Gas Turbines and Power, 1998, 120: 580–587.

    Article  CAS  Google Scholar 

  82. Winston H., Ferrell J., Davis R. The mechanism of heat transfer in the evaporator zone of the heat pipe. Heat Pipes. 1976: 413–423.

  83. Ma Y., Yu H., Huang S., et al., Effect of inclination angle on the startup of a frozen sodium heat pipe. Applied Thermal Engineering, 2022, 201: 117625.

    Article  CAS  Google Scholar 

  84. Teng W., Wang X., Zhu Y., Experimental investigations on start-up and thermal performance of sodium heat pipe under swing conditions. International Journal of Heat and Mass Transfer, 2020, 152: 119505.

    Article  CAS  Google Scholar 

  85. Tian Z., Liu X., Wang C., et al., Study on heat transfer performance of high temperature potassium heat pipe at steady state. Atomic Energy Science and Technology, 2020, 54: 1771–1778. (in Chinese)

    CAS  Google Scholar 

  86. Yu Q., Zhao P., Ma Y., CFD analysis on characteristics of high temperature heat pipe. Nuclear Power Engineering, 2022, 43: 70–76.

    Google Scholar 

  87. Shen Y., Zhang H., Xu H., et al., Maximum heat transfer capacity of high temperature heat pipe with triangular grooved wick. Journal of Central South University, 2015, 22: 386–391.

    Article  CAS  Google Scholar 

  88. Tian Z., Wang C., Huang J., et al., Experimental investigation on heat transfer limit of high-temperature sodium heat pipe for heat pipe cooled reactor. 2021 Academic Annual Meeting of China Nuclear Society, 19 October, 2021, pp. 189–194. (in Chinese)

  89. Shen Y., Zhang H., Xu H., et al., Heat transfer characteristics of high temperature heat pipe with triangular grooved wick under variable heat fluxes. CIESC Journal, 2014, 65: 3829–3837. (in Chinese)

    CAS  Google Scholar 

  90. Bai B., Research on internal flow-phase change and heat transfer enhancement of high temperature heat pipe: North China Electric Power University, 2021.

  91. Yamamoto T., Tanaka Y., Experimental study of sodium heat pipes: heat transfer, power, combustion, thermophysical properties. JSME International Journal, 1987, 30: 1776–1782.

    Article  CAS  Google Scholar 

  92. Davis W., Ferrell J., Evaporative heat transfer of liquid potassium in porous media. Thermophysics and Heat Transfer Conference, 1974.

  93. Bai T., Zhang H., Xu H., et al., Performance study on a novol combined wick of heat pipe. Proceedings of the CSEE, 2011, 31: 79–85. (in Chinese)

    Google Scholar 

  94. Wei G., Chai B., Wei G., et al., Experiment research on heat transfer performance of high temperature heat pipe with arteries. Atomic Energy Science and Technology, 2014, 48: 447–452. (in Chinese)

    Google Scholar 

  95. Wang J., Wang Q., Development and expectation of heat-pipe technology and wick research. Chemical Industry and Engineering Progress, 2015, 34: 891–902. (in Chinese)

    Google Scholar 

  96. Yu P., Zhang H., Xu H., et al., Startup performance of high-temperature sodium heat pipe with triangular groove wick. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37: 99–103. (in Chinese)

    Google Scholar 

  97. Tang H., Study on fabrication and heat transfer performance of unltra-thin heat pipe with copper mesh wick. South China University of Technology, 2018.

  98. Niu T., Zhang Y., Hou H., et al., Properties of high-temperature heat pipe and its experiment. Acta Aeronautica et Astronautica Sinica, 2016, 37: 59–65. (in Chinese)

    Google Scholar 

  99. Fang C., Fabrication and capillary performance of composite wicks based on metal fiber and powder sintering. South China University of Technology, 2016.

  100. Yu P., Zhang H., Xu H., et al., Restart characteristics of high-temperature sodium heat pipe. Proceedings of the CSEE, 2015, 35: 404–410. (in Chinese)

    Google Scholar 

  101. Yu P., Zhang H., Xu H., et al., Simulation for liquid sodium flow characteristics through combined wick. Journal of Central South University (Science and Technology), 2015, 46: 715–722. (in Chinese)

    CAS  Google Scholar 

  102. Yu P., Huang C., Zhang H., et al., Simulation for liquid-vapor phase change of metal sodium in combined wick. Journal of Engineering Thermophysics, 2018, 39: 2732–2737. (in Chinese)

    Google Scholar 

  103. Shen Y., Zhang H., Xu H., et al., Analysis on transient heat transfer performance and thermal resistances of high temperature heat pipe with combined wick. Journal of Basic Science and Engineering, 2015, 23: 541–553. (in Chinese)

    Google Scholar 

  104. Won Y., Barako M., Agonafer D., et al., Mechanical and thermal properties of copper inverse opals for two-phase convection enhancement. Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). 27–30 May, 2014, pp. 326–332.

  105. Zhang C., Lingamneni S., Barako M., et al., Characterization of the capillary performance of copper inverse opals. 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 31 May–03 June, 2016, pp. 1035–1039.

  106. Zhang C., Palko J., Barako M., et al., Design and optimization of well-ordered microporous copper structure for high heat flux cooling applications. International Journal of Heat and Mass Transfer, 2021, 173: 121241.

    Article  Google Scholar 

  107. Zhao J., Yuan D., Tang D., Heat transfer characteristics of the middle position heated annular high temperature heat pipes. Journal of Engineering Thermophysics, 2019, 40: 672–677. (in Chinese)

    Google Scholar 

  108. Chow L.C., Zhong J., Startup of sodium heat pipes from room temperatures. AIP Conference Proceedings, 06–10 January, 1991, pp. 849–856.

  109. Yu L., Research on the mechanism of high temperature heat pipes used in leading thermal protection structures. National University of Defense Technology, 2012.

  110. Sun H., Tang S., Wang C., et al., Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology. Nuclear Engineering and Design, 2020, 370: 110907.

    Article  CAS  Google Scholar 

  111. Liao Z., Xu C., Ren Y., et al., Thermal analysis of a conceptual loop heat pipe for solar central receivers. Energy, 2018, 158: 709–718.

    Article  Google Scholar 

  112. Du J., Wu X., Li R., et al., Numerical simulation and optimization of mid-temperature heat pipe exchanger. Fluid Dynamics & Materials Processing, 2019, 15: 77–87.

    Article  Google Scholar 

  113. Sun H., Zhang R., Wang C., et al., Reactivity feedback evaluation during the start-up of the heat pipe cooled nuclear reactors. Progress in Nuclear Energy, 2020, 120: 103217.

    Article  CAS  Google Scholar 

  114. Marocco L., Sala M., Centurelli G., et al., LES simulations and Nusselt number decomposition of turbulent mixed convection of liquid metals flowing in a vertical pipe. International Journal of Heat and Mass Transfer, 2022, 182: 121977.

    Article  CAS  Google Scholar 

  115. Huang J., Wang C., Guo K., et al., Heat transfer analysis of heat pipe cooled device with thermoelectric generator for nuclear power application. Nuclear Engineering and Design, 2022, 390: 111652.

    Article  CAS  Google Scholar 

  116. Zhang W., Sun K., Wang C., et al., Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility. Nuclear Engineering and Technology, 2021, 53: 3879–3891.

    Article  CAS  Google Scholar 

  117. Panda K., Dulera I., Basak A., Numerical simulation of high temperature sodium heat pipe for passive heat removal in nuclear reactors. Nuclear Engineering and Design, 2017, 323: 376–385.

    Article  CAS  Google Scholar 

  118. Yu P., Huang C., Liu L., et al., Heat and mass transfer characteristics of alkali metals in a combined wick of high-temperature heat pipe. Fluid Dynamics & Materials Processing, 2020, 16: 267–280.

    Article  ADS  Google Scholar 

  119. Kuznetsov G., Sitnikov A., Numerical analysis of basic regularities of heat and mass transfer in a high-temperature heat pipe. High Temperature, 2002, 40: 898–904.

    Article  CAS  Google Scholar 

  120. Han Y., Chai B., Zhou W., et al., Numerical simulation of potassium heat pipe based on porous media model. Atomic Energy Science and Technology, 2014, 48: 49–53. (in Chinese)

    Google Scholar 

  121. Ge P., Guo J., Sun X., et al., Numerical simulation of high-temperature heat pipe startup characteristics based on SIMPLEC algorithm. Atomic Energy Science and Technology, 2017, 51: 1974–1981. (in Chinese)

    Google Scholar 

  122. Zhao J., Development and heat transfer characteristics study of concentric annular high temperature heat pipe. University of Chinese Academy of Sciences, 2019.

  123. Shi S., Liu Y., Yilgor I., et al., A two-phase three-field modeling framework for heat pipe application in nuclear reactors. Annals of Nuclear Energy, 2022, 165: 108770.

    Article  CAS  Google Scholar 

  124. Guo Y., Su Z., Li Z., et al., Numerical investigation on the startup performance of high-temperature heat pipes for heat pipe cooled reactor application. Nuclear Science and Techniques, 2021, 32: 1–13.

    Article  Google Scholar 

  125. Bohdansky J., Strub H., Van Andel E., Heat transfer measurements using a sodium heat-pipe working at low vapor pressure. Proceeding of the Thermionic Conversion Specialist Conference, Houston, Texas. 1966.

  126. Kemme J., Heat pipe capability experiments. Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1966.

    Book  Google Scholar 

  127. Levy E., Theoretical investigation of heat pipes operating at low vapor pressures. Journal of Engineering for Industry, 1968, 90: 547–552.

    Article  Google Scholar 

  128. Yoshiharu F., Yoichi F., Performance characteristics of potassium heat pipe loaded with Argon. Journal of Nuclear Science and Technology, 1978, 15: 109–119.

    Article  Google Scholar 

  129. Busse C., Theory of the ultimate heat transfer limit of cylindrical heat pipes. International Journal of Heat and Mass Transfer, 1973, 16: 169–186.

    Article  CAS  Google Scholar 

  130. Faghri A., Thomas S., Performance characteristics of a concentric annular heat pipe: Part 1—Experimental prediction and analysis of the capillary limit. Journal of Heat Transfer, 1989, 111: 844–850.

    Article  CAS  Google Scholar 

  131. Zhang J., Tian Z., Wang C., et al., Study on heat transfer limitation of liquid metal high-temperature heat pipe. Atomic Energy Science and Technology, 2022, 56(10): 2024–2031. (in Chinese)

    ADS  Google Scholar 

  132. Huang J., Zhuang J., Zhang Y., Sonic limit of sodium heat pipe. Introduction of the Journal of Nanjing University of Technology (Natural Science Edition), 1993, 15(02): 55–59. (in Chinese)

    CAS  Google Scholar 

  133. Chi S., Heat pipe theory and practice. Hemisphere Publishing Corporation, 1976.

  134. Tien C., Chung K., Entrainment limits in heat pipes. AIAA Journal, 1979, 17: 643–646.

    Article  ADS  Google Scholar 

  135. Tilton D., Chow L., Mahefkey E., Transient response of a liquid metal heat pipe subjected to external thermal loading at the condenser. 4th Thermophysics and Heat Transfer Conference, 02–04 June, 1986, Paper No. 1271.

Download references

Acknowledgements

This work was completed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (52006218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingzhi Zhou or Xiulan Huai.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest. HUAI Xiulan is an editorial board member for Journal of Thermal Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhou, J., Zhou, G. et al. A Comprehensive Review of Thermal Performance Improvement of High-Temperature Heat Pipes. J. Therm. Sci. 33, 625–647 (2024). https://doi.org/10.1007/s11630-024-1890-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1890-7

Keywords

Navigation