Skip to main content

Advertisement

Log in

Enhanced Phase Change Heat Storage of Layered Backfill Body under Different Boundary Conditions

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In view of the high temperature problem faced by mining activities, the coordinated mining of ore deposit and geothermal energy is a solution in line with the concept of green mining. The layered backfill body with finned double-pipe heat exchanger continuously exchanges heat with the surrounding thermal environment, which plays an effective role in gathering geothermal energy. In this paper, the heat storage process of each layered backfill body under different boundary conditions is simulated by Fluent. The results show the heat storage characteristic of layered backfill body can be significantly improved by adding fins to the double-pipe heat exchanger. On the whole, the heat storage effect of bottom layer backfill body (BLBB) is the best. The total heat storage capacity of top layer backfill body (TLBB), middle layer backfill body (MLBB) and BLBB with the finned double-pipe heat exchanger is 666.3 kJ, 662.2 kJ, 1003.0 kJ; 1639.0 kJ, 1760.8 kJ, 1911.2 kJ and 1731.1 kJ, 1953.3 kJ, 1962.8 kJ respectively at 1 h, 8 h and 24 h. This study explores the law of heat storage of layered backfill body under different boundary conditions and also expands the idea for layered backfill body to efficiently accumulate geothermal energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A mush :

mushy zone constant

c p :

specific heat at constant pressure/J·(kg·°C)−1

g :

gravitational acceleration/m·s−2

H :

phase change enthalpy/kJ

H sen :

sensible enthalpy/kJ

ΔH :

latent heat of phase change in the melting process/kJ

h air :

convection heat transfer coefficient of airflow/W·(m2·°C)−1

Δl :

the distance from the bottom of LBB/mm

m :

height of fin/mm

Q :

the total heat storage capacity/kJ

Q :

the heat storage capacity of the layered

Q 1 :

backfill body/kJ

Q 2 :

the heat storage capacity of the double-pipe heat exchanger/kJ

R 1 :

radius of outer pipe/mm

R 2 :

radius of inner pipe/mm

r :

latent heat value of the n-octadecane/kJ·kg−1

S :

source term

T :

temperature/°C

\({\vec u}\) :

flow velocity of liquid phase/m·s−1

V :

volume/m3

\({\vec v}\) :

flow velocity of solid phase/m·s−1

w :

width of fin/mm

β :

liquid fraction

γ :

decrease percentage of Φ/%

ε :

a number less than 0.0001

Θ :

dimensionless temperature

λ :

thermal conductivity/W (m·°C)−1

µ :

kinetic viscosity/kg·(m·s)−1

ρ :

density/kg·m−3

Φ :

heat storage rate/W

ΔΦ :

decrease value of Φ/W

air:

airflow in stope

F:

fin

ini:

initial state of layered backfill body

l:

liquid phase of PCM

ref:

reference value

side:

the side of each layered backfill body

s:

solid phase of PCM

sr:

surrounding rock

t :

a certain time

t+1:

the next time

up:

the upper of each layered backfill body

BLBB:

Bottom layer backfill body

LBB:

Layered backfill body

MLBB:

Middle layer backfill body

PCM:

Phase change material

TLBB:

Top layer backfill body

References

  1. Chen W., Liang S., Liu J., Proposed split-type vapor compression refrigerator for heat hazard control in deep mines. Applied Thermal Engineering, 2016, 105: 425–435.

    Article  Google Scholar 

  2. Wei D., Du C., Lin Y., et al., Thermal environment assessment of deep mine based on analytic hierarchy process and fuzzy comprehensive evaluation. Case Studies in Thermal Engineering, 2020, 19: 100618.

    Article  Google Scholar 

  3. Su Z., Jiang Z., Sun Z., Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index. Procedia Earth and Planetary Science, 2009, 1(1): 414–419.

    Article  ADS  Google Scholar 

  4. Xie Z., Distribution law of high temperature mine’s thermal environment parameters and study of heat damage’s causes. Procedia Engineering, 2012, 43: 588–593.

    Article  Google Scholar 

  5. Menéndez J., Ordóñez A., Álvarez R., et al., Energy from closed mines: Underground energy storage and geothermal applications. Renewable and Sustainable Energy Reviews, 2019, 108: 498–512.

    Article  Google Scholar 

  6. Guo P., Zheng L., Sun X., et al., Sustainability evaluation model of geothermal resources in abandoned coal mine. Applied Thermal Engineering, 2018, 144: 804–811.

    Article  Google Scholar 

  7. Bao T., Meldrum J., Green C., et al., Geothermal energy recovery from deep flooded copper mines for heating. Energy Conversion and Management, 2019, 183: 604–616.

    Article  Google Scholar 

  8. Raymond J., Therrien R., Low-temperature geothermal potential of the flooded Gaspe Mines. Quebec, Canada. Geothermics, 2008, 37(2): 189–210.

    Article  ADS  Google Scholar 

  9. Menéndez J., Ordónez A., Jesús M., et al., Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings. Renewable Energy, 2020, 146: 1166–1176.

    Article  Google Scholar 

  10. Bao T., Liu Z., Meldrum J., et al., Field tests and multiphysics analysis of a flooded shaft for geothermal applications with mine water. Energy Conversion and Management, 2018, 169: 174–185.

    Article  Google Scholar 

  11. Bao T., Liu Z., Geothermal energy from flooded mines: Modeling of transient energy recovery with thermohaline stratification. Energy Conversion and Management, 2019, 199: 111956–111956.

    Article  Google Scholar 

  12. Bao T., Liu Z., Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines. Applied Energy, 2019, 237: 566–580.

    Article  Google Scholar 

  13. Bao T., Cao H., Qin Y., et al., Critical insights into thermohaline stratification for geothermal energy recovery from flooded mines with mine water. Journal of Cleaner Production, 2020, 273: 122989.

    Article  Google Scholar 

  14. Wang G., Qiao D., Stability analysis of upward horizontal slice stoping and filling method with pointed pillars in Dahongshan Copper Mine. Gold, 2014, 35: 36–39.

    ADS  Google Scholar 

  15. Peng F., Zhu T., Wang X., Improvement of upward horizontal slicing and filling mining method in Huogeqi Copper Mine. Nonferrous Metals (mine part), 2012, 64: 14–16.

    Google Scholar 

  16. Li S., Wu F., Xu J., Research on optimization of flat backcut and fill stoping method. Metal Mine, 2006, 04: 1–6.

    Google Scholar 

  17. Ghoreishi-Madiseh S., Hassani F., Abbasy F., Numerical and experimental study of geothermal heat extraction from backfilled mine stopes. Applied Thermal Engineering, 2015, 90: 1119–1130.

    Article  Google Scholar 

  18. Templeton J., Ghoreishi-Madiseh S., Hassani F., et al., Study of transient conjugate heat transfer in helical closed-loop geothermal heat exchangers for application of thermal energy storage in backfilled mine stopes. IOP Conference Series: Earth and Environmental Science, 2019, 268(1): 012086.

    Google Scholar 

  19. Zhang X., Liu L., Liu L., et al., Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube. Journal of Central South University, 2019, 26(08): 2160–2174.

    Article  Google Scholar 

  20. Zhang X., Zhao M., Liu L., et al., Phase-change heat storage backfill: Experimental study on rheological properties of backfill slurry with paraffin added. Construction and Building Materials, 2020, 262: 120736.

    Article  Google Scholar 

  21. Zhang X., Xu M., Liu L., et al., The Concept, technical system and heat transfer analysis on phase-change heat storage backfill for exploitation of geothermal energy. Energies, 2020, 13(18): 4755.

    Article  Google Scholar 

  22. Zhang D., Gao P., Zhou Y., et al., An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage. Renewable Energy, 2020, 148: 1–21.

    Article  Google Scholar 

  23. Liu Z., Li R., Wang D., et al., Multilayer quasi-three-dimensional model for the heat transfer inside the borehole wall of a vertical ground heat exchanger. Geothermics, 2020, 83: 101711.

    Article  Google Scholar 

  24. Nordbeck J., Bauer S., Beyer C., Experimental data for the characterization of heat transfer processes in a cement based thermal energy storage system with helical heat exchanger. Data in Brief, 2019, 27: 104721.

    Article  Google Scholar 

  25. Oosterkamp A., Ytrehus T., Sondre T., et al., Effect of the choice of boundary conditions on modelling ambient to soil heat transfer near a buried pipeline. Applied Thermal Engineering, 2016, 100: 367–377.

    Article  Google Scholar 

  26. Pahamli Y., Hosseini M., Ranjbar A., et al., Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger. Applied Mathematics and Computation, 2018, 316: 30–42.

    Article  MathSciNet  Google Scholar 

  27. Mahdi M., Mahood H., Hasan A., et al., Campbell., Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit. Thermal Science and Engineering Progress, 2019, 11: 40–19.

    Article  Google Scholar 

  28. Taghilou M., Sefidan A., Sojoudi A., et al., Solid-liquid phase change investigation through a double pipe heat exchanger dealing with time-dependent boundary conditions. Applied Thermal Engineering, 2018, 128: 725–736.

    Article  Google Scholar 

  29. Mehta D., Solanki K., Rathod M., et al., Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. Journal of Energy Storage, 2019, 23: 344–362.

    Article  Google Scholar 

  30. Mahdi J., Lohrasbi S., Ganji D., et al., Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. International Journal of Heat and Mass Transfer, 2018, 124: 663–676.

    Article  Google Scholar 

  31. Kalapala L., Devanuri J., Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage — A review. Journal of Energy Storage, 2018, 20: 497–519.

    Article  Google Scholar 

  32. Hosseini M., Ranjbar A., Rahimi M., et al., Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems. Energy & Buildings, 2015, 99: 263–272.

    Article  Google Scholar 

  33. Zhang X., Xu M., Liu L., et al., Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material. Journal of Materials Research and Technology, 2020, 9(2): 2164–2175.

    Article  Google Scholar 

  34. Hu Z., Sun Z., Meng E., et al., Numerical study of stepped-fin effects on thermal performance of sleeve-tube thermal energy storage units. Journal of Chemical Engineering of Chinese Universities, 2018, 32(04): 817–822.

    Google Scholar 

  35. Zhang X., Zhao M., Liu L., et al., Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger. Construction and Building Materials, 2020, 265: 120340.

    Article  Google Scholar 

  36. Jradi M., Veje C., Jørgensen B., Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector. Applied Thermal Engineering, 2017, 114: 360–373.

    Article  Google Scholar 

  37. Kadivar M., Moghimi M., Sapin P., et al., Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store. Journal of Energy Storage, 2019, 26: 101030.

    Article  Google Scholar 

  38. Zhang M., Liu X., Biswas K., et al., A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material. Applied Thermal Engineering, 2019, 162: 114297.

    Article  Google Scholar 

  39. Pu L., Zhang S., Xu L., et al., Thermal performance optimization and evaluation of a radial finned shelland-tube latent heat thermal energy storage unit. Applied Thermal Engineering, 2020, 166: 114753.

    Article  Google Scholar 

  40. Ji C., Qin Z., Dubey S., et al., Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection. International Journal of Heat and Mass Transfer, 2018, 127: 255–265.

    Article  Google Scholar 

  41. Cao X., Yuan Y., Xiang B., et al., Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit. Sustainable Cities and Society, 2018, 38: 571–581.

    Article  Google Scholar 

  42. Liu C., Groulx D., Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. International Journal of Thermal Sciences, 2014, 82: 100–110.

    Article  Google Scholar 

  43. Wang M., Liu L., Zhang X., et al., Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM. Applied Thermal Engineering, 2018, 150: 121–131.

    Article  Google Scholar 

  44. Agrawal K., Misra R., Ghanshyam Das Agrawal., Thermal performance analysis of slinky-coil ground-air heat exchanger system with sand-bentonite as backfilling material. Energy & Buildings, 2019, 202: 109351.

    Article  Google Scholar 

  45. Afshan M., Selvakumar A., Velraj R., et al., Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications. Renewable Energy, 2020, 148: 876–888.

    Article  Google Scholar 

  46. Gürel B., A numerical investigation of the melting heat transfer characteristics of phase change materials in different plate heat exchanger (latent heat thermal energy storage) systems. International Journal of Heat and Mass Transfer, 2020, 148: 119117.

    Article  Google Scholar 

  47. Waser R., Maranda S., Stamatiou A., et al., Modeling of solidification including supercooling effects in a fin-tube heat exchanger based latent heat storage. Solar Energy, 2020, 200: 10–21.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 51974225, 51874229, 51674188, 51504182, 51904224, 51904225, 51704229), Shaanxi Innovative Talents Cultivate Program-New-star Plan of Science and Technology (No. 2018KJXX-083), Natural Science Basic Research Plan of Shaanxi Province of China (Nos. 2018JM5161, 2018JQ5183, 2015JQ5187, 2019JM-074), Scientific Research Program funded by the Shaanxi Provincial Education Department (Nos. 15JK1466, 19JK0543), China Postdoctoral Science Foundation (No. 2015M582685), and Outstanding Youth Science Fund of Xi’an University of Science and Technology (No. 2018YQ2-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, M., Liu, L. et al. Enhanced Phase Change Heat Storage of Layered Backfill Body under Different Boundary Conditions. J. Therm. Sci. 32, 1190–1212 (2023). https://doi.org/10.1007/s11630-023-1787-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1787-x

Keywords

Navigation