Skip to main content
Log in

Numerical simulation on thermal accumulation of cemented tailings backfill

尾砂胶结充填体蓄热性能的数值模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill (CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10–90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.

摘要

本文以实现深部矿产资源与地热协同开采为着眼点,对尾砂胶结充填体热累积过程进行数值模拟研究,分析了蓄热时间、料浆配比及热环境对充填体蓄热性能的影响,同时对比了围岩导热与采场风流对流换热对充填体热累积过程的影响。 结果表明:充填体总储热量在蓄热10~90 天增大约85%。 在本文模拟工况下,围岩温度和初始温度对总储热量的影响更为显著,其影响约为浆料配比的2 倍。 可见,围岩温度的升高和初始温度的降低能更有效地提高储热量。 另外,热传导在充填体热积累过程中占有相当大的比重,平均导热量约为热对流量的25 倍。 该研究可为矿井地热资源开发中充填体热累积过程的优化提供理论依据和应用参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T :

Temperature, °C

c p :

Specific heat at constant pressure, (kJ·kg·°C−1)

h :

Surface convective heat transfer coefficient, (w·m−2·°C−1)

q :

Heat transfer rate, kW

Q :

Total thermal accumulation capacity, kJ

d:

Time, d

λ :

Thermal conductivity, (W·m−1·°C−1)

ρ :

Density, (g·cm−3)

α :

Slurry concentration

β :

Cement-to-tailings ratio

s :

Boundary between CTB and surrounding rock

w :

Boundary between CTB and stope

b :

Surrounding rock

a :

Airflow

bf:

CTB

0:

Initial

n :

Normal direction

cond:

Heat conduction

conv:

Heat convection

References

  1. DUDKA A, ADRIANO D A. Environmental impacts of metal ore mining and processing: A Review [J]. Jounal of Environmental Quality, 1997, 25: 590–602. DOI: https://doi.org/10.2134/jeq1997.00472425002600030003x.

    Article  Google Scholar 

  2. RANJITH P G, ZHAO J, JU M H, DE SILVA R V S, RATHNAWEERA T D, BANDARA A K M S. Opportunities and challenges in deep mining: A brief review [J]. Engineering, 2017, 3: 546–551. DOI: https://doi.org/10.1016/J.ENG.2017.04.024.

    Article  Google Scholar 

  3. LUO Li-qun, LI Ke-yao, WENG Fu, LIU Cheng, YANG Si-yuan. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings [J]. Construction and Building Materials, 2020, 232: 117250. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117250.

    Article  Google Scholar 

  4. CUI Liang, FALL M. An evolutive elasto-plastic model for cemented paste backfill [J]. Computers and Geotechnics, 2016, 71: 19–29. DOI: https://doi.org/10.1016/j.compgeo.2015.08.013.

    Article  Google Scholar 

  5. LI Li. A generalized solution for mining backfill design [J]. International Jounal of Geomechanics, 2014, 14(3): 1–11. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000329.

    Google Scholar 

  6. YIN Sheng-hua, WU Ai-xiang, HU Kai-jian, WANG Yong, ZHANG Yan-kai. The effect of solid components on the rheological and mechanical properties of cemented paste backfill [J]. Minerals Engineering, 2012, 35: 61–66. DOI: https://doi.org/10.1016/j.mineng.2012.04.008.

    Article  Google Scholar 

  7. YIN Sheng-hua, SHAO Ya-jian, WU Ai-xiang, WANG Hong-jiang, LIU Xiao-hui, WANG Yong. A systematic review of paste technology in metal mines for cleaner production in China [J]. Jounal of Cleaner Production, 2020, 247: 119590. DOI: https://doi.org/10.1016/j.jclepro.2019.119590.

    Article  Google Scholar 

  8. WANG Yong, FALL M, WU Ai-xiang. Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate [J]. Cement and Concrete Composites, 2016, 67: 101–110. DOI: https://doi.org/10.1016/j.cemconcomp.2016.01.005.

    Article  Google Scholar 

  9. ERCIKDI B, KESIMAL A, CIHANGIR F, DEVECI H, ALP İ. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage [J]. Cement and Concrete Composites, 2009, 31: 268–274. DOI: https://doi.org/10.1016/j.cemconcomp.2009.01.008.

    Article  Google Scholar 

  10. XIE Zhong-peng. Distribution law of high temperature mine’s thermal environment parameters and study of heat damage’s causes [J]. Procedia Engineering, 2012, 43: 588–593. DOI: https://doi.org/10.1016/j.proeng.2012.08.104.

    Article  Google Scholar 

  11. GAO Yong-ge, LIU Fu-ming. The study of thermal pollution disposal on the deep coal mine working face [C]// PACIIA 2009, 2009: 304–307. DOI: https://doi.org/10.1109/PACIIA.2009.5406598.

    Google Scholar 

  12. LIU Lang, XIN Jie, ZHANG Bo, ZHANG Xiao-yan, WANG Mei, QIU Huan-fu, CHEN Liu. Basic theories and applied exploration of functional backfill in mines [J]. Jounal of China Coal Society, 2018, 43: 1811–1820. DOI: https://doi.org/10.13225/j.cnki.jccs.2017.1626.

    Google Scholar 

  13. GHOREISHI-MADISEH S A, HASSANI F, ABBASY F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes [J]. Applied Thermal Engineering, 2015, 90: 1119–1130. DOI: https://doi.org/10.1016/j.applthermaleng.2014.11.023.

    Article  Google Scholar 

  14. NIU Yong-sheng. Research on thermal energy recycling utilization in high temperature mines [J]. Procedia Engineering, 2015, 21: 389–395. DOI: https://doi.org/10.1016/j.proeng.2015.08.1083.

    Article  Google Scholar 

  15. GUO Ping-ye, HE Man-chao, ZHENG Lian-ge, ZHANG Na. A geothermal recycling system for cooling and heating in deep mines [J]. Applied Thermal Engineering, 2017, 116: 833–839. DOI: https://doi.org/10.1016/j.applthermaleng.2017.01.116.

    Article  Google Scholar 

  16. RODRÍGUEZ R, DÍAZ M B. Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method [J]. Renewable Energy, 2009, 34: 1716–1725. DOI: https://doi.org/10.1016/j.renene.2008.12.036.

    Article  Google Scholar 

  17. AHMAD S, RIZVI Z, KHAN M A, AHMAD J, WUTTKE F. Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading [J]. Materials Today: Proceedings, 2019, 17: 85–95. DOI: https://doi.org/10.1016/j.matpr.2019.06.404.

    Google Scholar 

  18. AL-AMEEN Y, IANAKIEV A, EVANS R. Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems [J]. Energy, 2018, 151: 556–568. DOI: https://doi.org/10.1016/j.energy.2018.03.095.

    Article  Google Scholar 

  19. KAYACI N, DEMIR H. Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump [J]. Geothermics, 2018, 73: 33–47. DOI: https://doi.org/10.1016/j.geothermics.2018.01.009.

    Article  Google Scholar 

  20. TONG Cang, LI Xiang-li, DUANMU Lin, WANG Zong-shan. Research on heat transfer characteristics of soil thermal storage in the non-heating Season [J]. Procedia Engineering, 2017, 205: 3293–3300. DOI: https://doi.org/10.1016/j.proeng.2017.10.338.

    Article  Google Scholar 

  21. WU Xuan, LIU Wei, LU Zi-ye, LIANG Pan-long, JIN Guang. Simulation on temperature variation characteristics of soil around buried pipe in process of heat storage and release [J]. Transactions of CASE, 2017, 33: 204–213. DOI: https://doi.org/10.11975/j.issn.1002-6819.2017.03.028.

    Google Scholar 

  22. ZHANG Liang, XU Peng, MAO Jia-chen, TANG Xu, LI Zheng-wei, SHI Jian-guo. A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study [J]. Applied Thermal Engineering, 2015, 156: 213–222. DOI: https://doi.org/10.1016/j.apenergy.2015.07.036.

    Google Scholar 

  23. BERNARDES M A D S. On the heat storage in solar updraft tower collectors-Influence of soil thermal properties [J]. Solar Energy 2013, 98: 49–57. DOI: https://doi.org/10.1016/j.solener.2013.07.014.

    Article  Google Scholar 

  24. CHEN Hong-bing, DING Han-wan, LIU Song-yu, WU Wei, ZHANG Lei. Comparative study on heat and moisture transfer in soil heat charging at high temperature for various soils [J]. Energy Procedia, 2015, 75: 3148–3153. DOI: https://doi.org/10.1016/j.egypro.2015.07.649.

    Article  Google Scholar 

  25. WANG Li-hui, ZOU Xue-cheng, TAO Hui, SONG Jie, ZHENG Yi. Experimental study on evolution characteristics of the heat storage of surrounding soil in subway tunnels [J]. Procedia Engineering, 2017, 205: 2728–2735. DOI: https://doi.org/10.1016/j.proeng.2017.10.191.

    Article  Google Scholar 

  26. LI Wei, LI Xin-guo, ZHAO Jun, HAN Min-xia. Study on heat storage characteristics of soil and simulation [J]. Acta Energiae Solaris Sinica, 2009, 30: 1491–1495.

    Google Scholar 

  27. ZHANG Xiao-yan, LIU Li, LIU Lang, LIU Lu, JIA Yu-hang. Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube [J]. Journal of Central South University, 2019, 26: 2160–2174. DOI: https://doi.org/10.1007/s11771-019-4163-y.

    Article  Google Scholar 

  28. ZHANG Xiao-yan, XU Mu-yan, LIU Lang, HUAN Chao, ZHAO Yu-jiao, Qi Chong-chong, SONG KI-IL. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material [J]. Journal of Materials Research Technology, 2019, 9: 2164–2175. DOI: https://doi.org/10.1016/j.jmrt.2019.12.047.

    Article  Google Scholar 

  29. ZHANG Xiao-yan, ZHAO Min, LIU Lang, HUAN Chao, ZHAO Yu-jiao, QI Chong-chong, SONG KI-IL. Numerical sumulation on heat storage performance of backfill body based on tube-in-tube heat exchanger [J]. Construction and Building Materials, 2020, 265: 120340. DOI: https://doi.org/10.1016/j.conbulidmat.2020.120340.

    Article  Google Scholar 

  30. ZHANG Xiao-yan, XU Muyan, LIU Li, LIU Lang, WANG Mei, LI Hai-wei, SONG KI-IL. Numerical sumulation on heat storage performance of backfill body based on tube-in-tube heat exchanger [J]. Energies, 2020, 13. DOI: https://doi.org/10.3390/en13184755.

Download references

Funding

Projects(51974225, 51674188, 51874229, 51904224, 51904225, 51704229) supported by the National Natural Science Foundation of China; Project(2018KJXX-083) supported by the Shaanxi Innovative Talents Cultivate Program-New-Star Plan of Science and Technology, China; Projects(2018JM5161, 2018JQ5183, 2015JM-074) supported by the Natural Science Basic Research Plan of Shaanxi Province, China; Project(19JK0543) supported by the Scientific Research Program funded by Education Department of Shaanxi Province, China; Project(2018YQ201) supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology, China

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Xiao-yan performed the data curation, supervision and writing-review and editing. ZHAO Min performed the formal analysis, investigation, methodology and validation. LIU Lang provided the concept and wrote the original draft. HUAN Chao and SONG KI-IL conducted the formal analysis and validation. XU Mu-yan provided the software supporting. WEN De provided the investigation supporting.

Corresponding author

Correspondence to Lang Liu  (刘浪).

Additional information

Conflict of interest

ZHANG Xiao-yan, ZHAO Min, LIU Lang, HUAN Chao, SONG KI-IL, XU Mu-yan and WEN De declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xy., Zhao, M., Liu, L. et al. Numerical simulation on thermal accumulation of cemented tailings backfill. J. Cent. South Univ. 28, 2221–2237 (2021). https://doi.org/10.1007/s11771-021-4760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4760-4

Key words

关键词

Navigation