Skip to main content
Log in

Thermodynamic Performance and Flammability Studies of Hydrocarbon Based Low Global Warming Potential Refrigerant Mixtures

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper presents a theoretical method to calculate the minimum inerting concentration (MIC) of binary and ternary blends (refrigerants) that are used in small refrigeration systems. MIC is the concentration of the dilutant which makes the flammable mixture into just non-flammable (at non-zero quenching potential). In this study, the refrigerant safety parameters such as flammability, Global Warming Potential (GWP) and performance (COP) are analyzed for twelve binary and thirteen ternary blends containing one flammable and two nonflammable (dilutant) components. Flammability investigation was carried out with the hydrocarbon refrigerants R290, R600, R600a each mixed with dilutants R227ea, R125, R245fa, R13I1 and R134a at different concentrations respectively. Two methods, thermal balance method (TBM) and modified thermal balanced method (MTBM), are used to estimate the MIC (which decides the flammable zone). Thirteen ternary blends were identified based on the MIC values estimated using MTBM. In the case of ternary blends, it was observed that the non-flammable zone is high for the compositions of the Mixture G, Mixture H and Mixture I. It was also estimated that the COPs of the proposed mixtures M22, M24, M25 and M27 are 4% greater than the COP of R134a (for the same operating conditions). Further, it was also understood that the corresponding GWP value is reduced by 90% to 97% for the mixtures (M21, M22, M24, M25 and M27) when compared to R134a (GWP=1300). Therefore, out of the thirteen proposed ternary mixtures (M15 to M27), the mixtures (M21, M22, M24, M25 and M27) are safe in terms of flammability, GWP and possess reasonable COP which can be a potential alternative refrigerant mixture to R134a in small refrigeration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B :

Constants and depends on refrigerant and dilutant combinations

CAFT:

Critical adiabatic flame temperature/K

CFC:

Chlorofluorocarbon

CFL:

Critical flammability line

CFR:

Critical flammability ratio

CIC:

Critical inerting concentration

COP:

Coefficient of performance

C st :

Stoichiometric concentration of refrigerant/%

C o :

The oxygen coefficient in a reaction (dimensionless)

GWP:

Global warming potential

HCFC:

Hydrochlorofluorocarbon

HCs:

Hydrocarbons

H f :

Heating potential of refrigerant

HFCs:

Hydrofluorocarbons

H f,m :

Heating potential of refrigerant mixture

HFOs:

Hydrofluoroolefins

H o :

Heating potential of oxygen based on air

K 1, K 2, K 3 :

Variables

LFL:

Lower flammability limit/%

MIC:

Minimum inerting concentration

MTBM:

Modified thermal balance method

ODP:

Ozone depleting potential

Q d :

Quenching potential of diluents

Q d1 :

First diluent quenching potential in ternary mixture

Q d2 :

Second diluent quenching potential in ternary mixture

Q f :

Quenching potential of refrigerant

Q f,m :

Quenching potential of refrigerant mixture

R :

Diluent ratio

R125:

Pentafluoro ethane

R134a:

1,1,1,2-Tetrafluoroethane

R13I1:

Trifluoro iodomethane

R227ea:

Heptafluoropropane

R245fa:

Pentafluoropropane

R290:

Propane

R600a:

Isobutane

R600:

n-butane

T a :

Ambient temperature/K

TBM:

Thermal balanced method

UFL:

Upper flammability limit/%

X LLower:

flammability limit of Refrigerant

X L,m :

Lower flammability limit of mixture

X U :

Upper flammability limit of Refrigerant

X U,m :

Upper flammability limit of mixture

X 1 :

Concentration of first diluent in mass fraction

X 2 :

Concentration of second diluent in mass fraction

X R :

Concentration of refrigerant in mass fraction

Φ :

Inhibition coefficient

d:

diluent

i :

variable constants

m:

mixture

References

  1. Perkins J., Apparatus for producing ice and cooling fluids. Patent 6662, United Kingdom, 1834.

  2. El-Sayed A.R., El Morsi M., Mahmoud N., A review of the potential replacements of HCFC/HFCs using environment-friendly refrigerants. International Journal of Air-Conditioning and Refrigeration, 2018, 26(03): 1830002. DOI: https://doi.org/10.1142/S2010132518300021.

    Article  Google Scholar 

  3. Emani M.S., Mandal B.K., The use of natural refrigerants in refrigeration and air conditioning systems: a review. In IOP Conference Series: Materials Science and Engineering, 2018, 377(1): 012064.

    Article  Google Scholar 

  4. Singh S., Hafner A., Banasiak K., Maiya P.M., Neksa P., Experimental evaluation of multi-ejector-based CO2 cooling system for supermarkets in tropical zones. 17th International Refrigeration and Air Conditioning Conference, 2018.

  5. Dilshad S., Kalair A.R., Khan N., Review of carbon dioxide (CO2) based heating and cooling technologies: Past, present, and future outlook. International Journal of Energy Research, 2020, 44(3): 1408–1463. DOI: https://doi.org/10.1002/er.5024.

    Article  Google Scholar 

  6. Zhao Y., Bin L., Haibo Z., Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants. Experimental Thermal and Fluid Science, 2004, 28(6): 557–563. DOI: https://doi.org/10.1016/j.expthermflusci.2003.06.005.

    Article  Google Scholar 

  7. Zhao Y., Wu T., Li X.H., Experimental studies and estimates of the explosion limit of some environmentally friendly refrigerants. Combustion Science and Technology, 2005, 177(3): 613–626. DOI: https://doi.org/10.1080/00102200590900507.

    Article  Google Scholar 

  8. Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Sekiya A., Flammability limits of isobutane and its mixtures with various gases. Journal of Hazardous Materials, 2007, 148(3): 640–647. DOI: https://doi.org/10.1016/j.jhazmat.2007.03.021.

    Article  Google Scholar 

  9. Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Sekiya A., Flammability limits of five selected compounds each mixed with HFC-125. Fire Safety Journal, 2009, 44(2): 192–197. DOI: https://doi.org/10.1016/j.firesaf.2008.06.001.

    Article  Google Scholar 

  10. Tian G., Li X., Gao Y., Zhang F., Theoretical and experimental study of explosion limits and the inhibition of flammable refrigerants. Journal of Software Engineering and Applications, 2016, 9(10): 501. DOI: https://doi.org/10.4236/jsea.2016.910033.

    Article  Google Scholar 

  11. Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits. Fire Safety Journal, 2006, 41(5): 406–417. DOI: https://doi.org/10.1016/j.firesaf.2006.03.002.

    Article  Google Scholar 

  12. Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: https://doi.org/10.1016/j.jhazmat.2006.05.035.

    Article  Google Scholar 

  13. Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Sekiya A., Flammability limits of isobutane and its mixtures with various gases. Journal of Hazardous Materials, 2007, 148(3): 640–647. DOI: https://doi.org/10.1016/j.jhazmat.2007.03.021.

    Article  Google Scholar 

  14. Chen C.C., Liaw H.J., Wang T.C., Lin C.Y., Carbon dioxide dilution effect on flammability limits for hydrocarbons. Journal of Hazardous Materials, 2009, 163(2–3): 795–803. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.051.

    Article  Google Scholar 

  15. Chen C.C., Liaw H.J., Wang T.C., Lin C.Y., Nitrogen dilution effect on the flammability limits for hydrocarbons. Journal of Hazardous Materials, 2009, 166(2–3): 880–890. DOI: https://doi.org/10.1016/j.jhazmat.2008.11.093.

    Article  Google Scholar 

  16. Li Z., Gong M., Sun E., Wu J., Zhou Y., Effect of low temperature on the flammability limits of methane/nitrogen mixtures. Energy, 2011, 36(9): 5521–5524. DOI: https://doi.org/10.1016/j.energy.2011.07.023.

    Article  Google Scholar 

  17. Zhao F., Mannan M.S., Numerical analysis for nitrogen dilution on flammability limits of hydrocarbon mixtures. Journal of Loss Prevention in the Process Industries. 2016, 43: 600–613. DOI: https://doi.org/10.1016/j.jlp.2016.06.015.

    Article  Google Scholar 

  18. Mendiburu A.Z., de Carvalho Jr J.A., Coronado C.R., Method for determination of flammability limits of gaseous compounds diluted with N2 and CO2 in air. Fuel, 2018, 226: 65–80. DOI: https://doi.org/10.1016/j.fuel.2018.03.181.

    Article  Google Scholar 

  19. Sattar M.A., Rahman S., Haji H.M., Performance investigation of domestic refrigerator using pure hydrocarbons and blends of hydrocarbons as refrigerants. 2007, pp. 223–228. Website: http://eprints.um.edu.my/id/eprint/6876.

  20. Mohanraj M., Jayaraj S., Muraleedharan C., Chandrasekar P., Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. International Journal of Thermal Sciences, 2009, 48(5): 1036–1042. DOI: https://doi.org/10.1016/j.ijthermalsci.2008.08.001.

    Article  Google Scholar 

  21. Dalkilic A.S., Wongwises S., A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. International Communications in Heat and Mass Transfer, 2010, 37(9): 1340–1349. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.07.006.

    Article  Google Scholar 

  22. Yoon W.J., Seo K., Chung H.J., Kim Y., Performance optimization of dual-loop cycles using R-600a and hydrocarbon mixtures designed for a domestic refrigerator-freezer. International Journal of Refrigeration, 2012, 35(6): 1657–1667. DOI: https://doi.org/10.1016/j.ijrefrig.2012.04.019.

    Article  Google Scholar 

  23. Rasti M., Aghamiri S., Hatamipour M.S., Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a. International Journal of Thermal Sciences, 2013, 74: 86–94. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.07.009.

    Article  Google Scholar 

  24. Saravanakumar R., Selladurai V., Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 933–940.

    Article  Google Scholar 

  25. Yan G., Cui C., Yu J., Energy and exergy analysis of zeotropic mixture R290/R600a vapor-compression refrigeration cycle with separation condensation. International Journal of Refrigeration, 2015, 53: 155–162. DOI: https://doi.org/10.1016/j.ijrefrig.2015.01.007.

    Article  Google Scholar 

  26. Banjo S.O., Bolaji B.O., Osagie I., Fayomi O.S.I., Fakehinde O.B., Olayiwola P.S., Udoye N.E., Experimental analysis of the performance characteristic of an eco-friendly HC600a as a retrofitting refrigerant in a thermal system. Journal of Physics: Conference Series, 2019, 1378(4): 042033.

    Google Scholar 

  27. Ma T., A thermal theory for estimating the flammability limits of a mixture. Fire Safety Journal, 2011, 46(8): 558–567. DOI: https://doi.org/10.1016/j.firesaf.2011.09.002.

    Article  Google Scholar 

  28. Ma T., Using critical flame temperature for estimating lower flammable limits of a mixture. Process Safety Progress, 2013, 32(4): 387–392. DOI: https://doi.org/10.1002/prs.11603.

    Article  Google Scholar 

  29. Ma T., Larrañaga M., Theoretical flammability diagram for analyzing mine gases. Fire Technology, 2015, 51(2): 271–286.

    Article  Google Scholar 

  30. Kumma N., Moideen A., Kaushik P., Kruthiventi S.H., Modified thermal balance method for estimating minimum inerting concentraion of flammable refrigerant mixtures. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2201–2210.

    Article  Google Scholar 

  31. Kumma N., Kruthiventi S.S.H., Flammability and performance studies of eco-friendly ternary refrigerant mixtures used in vapour compression systems. Environmental Science and Pollution Research, 2022, pp. 1–17. DOI: https://doi.org/10.1007/s11356-022-19363-z.

  32. Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O., NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 10.0. National Institute of Standards and Technology. Standard Reference Data Program, Gaithersburg, 2018.

  33. Harish Kruthiventi S.S., Venkatarathnam G., Comparison of the straight adiabatic capillary tube expansion devices used in refrigeration systems operating with refrigerants R134a and R1234yf. Journal of Thermal Science and Engineering Applications, 2016. DOI: https://doi.org/10.1115/1.4032366.

  34. Zhang L., Yang C., Liu H., Du P., Gao H., Theoretical investigation on the properties of R744/R290 mixtures. Procedia Engineering, 2017, 205: 1620–1626. DOI: https://doi.org/10.1016/j.proeng.2017.10.304.

    Article  Google Scholar 

  35. Ural E.A., Flammability potential of halogenated fire suppression agents and refrigerants. Process Safety Progress, 2003, 22(1): 65–73. DOI: https://doi.org/10.1002/prs.680220109.

    Article  Google Scholar 

  36. Choudhari C.S., Sapali S.N., Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Procedia, 2017, 109: 346–352. DOI: https://doi.org/10.1016/j.egypro.2017.03.084.

    Article  Google Scholar 

  37. Granryd E., Hydrocarbons as refrigerants—an overview. International Journal of Refrigeration, 2001, 24(1): 15–24. DOI: https://doi.org/10.1016/j.ijrefrig.2006.03.003.

    Article  Google Scholar 

  38. Dubey A.M., Kumar S., Agrawal G.D., Numerical optimization of a transcritical CO2/propylene cascaded refrigeration-heat pump system with economizer in HT cycle. Sadhana, 2015, 40(2): 437–454.

    Article  Google Scholar 

  39. Ghanbarpour M., Mota-Babiloni A., Badran B.E., Khodabandeh R., Theoretical global warming impact evaluation of medium and high temperature heat pumps using low GWP refrigerants. Applied Sciences, 2021, 11(15): 7123. DOI: https://doi.org/10.3390/app11157123.

    Article  Google Scholar 

  40. Direk M., Mert M.S., Soylu E., Yuksel F., Experimental investigation of an automotive air conditioning system using R444A and R152a refrigerants as alternatives of R134a. Strojniski Vestnik-Journal of Mechanical Engineering, 2019, 65(4): 212–219.

    Article  Google Scholar 

  41. Geete A., Sharma M., Shrimali P., Entropy generation and exergy destruction analyses for vapour compression refrigeration system with various refrigerants. SN Applied Sciences, 2019, 1(7): 1–12. DOI: https://doi.org/10.1007/s42452-019-0798-4.

    Article  Google Scholar 

  42. Geete A., Khandwawala A.I., Thermodynamic analysis for vapour compression refrigeration system by considering internal irreversibility with the help of designed computer software. i-Manager’s Journal on Mechanical Engineering, 2015, 5(2): 22. DOI: https://doi.org/10.26634/jme.5.2.3250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Harish Kruthiventi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumma, N., Kruthiventi, S.S.H. Thermodynamic Performance and Flammability Studies of Hydrocarbon Based Low Global Warming Potential Refrigerant Mixtures. J. Therm. Sci. 31, 1487–1502 (2022). https://doi.org/10.1007/s11630-022-1642-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1642-5

Keywords

Navigation