Skip to main content
Log in

Comparative Study on Heat Flux and Temperature Distribution Performance of Linear Fresnel Collector Based on Uniformity Index

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Linear Fresnel collector system as main solar energy collecting technology is widely studied. The secondary reflector has significant influence on the heat flux distribution on the linear Fresnel collector. In this work, the heat flux and temperature distribution on linear Fresnel collector is compared with different secondary reflectors of simple trapezoidal concentrator, segmented parabolic concentrator and compound parabolic concentrator under varied incident ray angle. The uniformity index is applied to evaluate the Linear Fresnel reflector system heat flux distribution performance. The results show that the value of uniformity index increases with the increasing of incident ray angle. The compound parabolic concentrator has the highest value of uniformity index compared with simple trapezoidal concentrator and segmented parabolic concentrator in this work. The highest value of uniformity index is 0.8137 with compound parabolic concentrator. This work provides effective and practical guide to design and evaluate the secondary reflector in linear Fresnel reflector system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

width of the mirror/m

f :

focal length/m

H :

height of receiver from axial plane of mirrors/m

Q n :

distance of n-th mirror axis from central plane of the collector/m

r t :

absorber tube radius/m

r g :

glass envelope radius/m

S n :

distance between the adjacent mirror axes/m

W :

the width of the opening of the secondary concentrator/m

CPC:

Compound Parabolic Concentrator

DNI:

Direct Normal Irradiance/W·m−2

LFC:

Linear Fresnel reflector

SPC:

Segmented Parabolic Concentrator

TC:

Trapezoidal Concentrator

α :

sunlight incident angle/(°)

α n :

mirror elements normal direction elevation angle/(°)

α S :

elevating angle/(°)

β n :

the nth mirror and the horizontal plane angle/(°)

γ n :

mirror elements normal direction azimuth

γ S :

Azimuth/(°)

θ a :

acceptance angle/(°)

n :

number of the primary reflector

References

  1. Wang G., Shen F., Wang F., et al., Design and experimental study of a solar CPV system using CLFR concentrator. Sustainable Energy Technologies and Assessments, 2020, 40: 100751.

    Article  Google Scholar 

  2. Sahar M., Amir M., Akbar A.A., Pooya M., Theoretical performance analysis of new class of Fresnel concentrated solar thermal collector based on parabolic reflectors. Sustainable Energy Technologies and Assessments, 2019, 31: 25–33.

    Article  Google Scholar 

  3. Zhang P., Reserach on model predictive control of the collecting system of linear Fresnel photothermal power plant. Lanzhou Jiaotong University, 2019.

    Google Scholar 

  4. Francia G., Pilot plants of solar steam generating stations. Solar Energy, 1968, 12(1): 51–64.

    Article  ADS  Google Scholar 

  5. Du C., Wang P., Ma C., Introduction on linear Fresnel reflector system. Energy Research Management, 2010, (03): 7–9.

    Google Scholar 

  6. Feuermann D., Gordon J.M., Analysis of a two-stage linear Fresnel reflector solar concentrator. Journal of Solar Energy Engineering, 1991, 113(4): 272–279.

    Article  Google Scholar 

  7. Singh P.L., Ganesan S., Yàdav G.C., Technical note: Performance study of a linear Fresnel concentrating solar device. Renewable Energy, 1999, 18(3): 409–416.

    Article  Google Scholar 

  8. Mills D.R., Morrison G.L., Compact Linear Fresnel Reflector solar thermal power plants. Solar Energy, 2000, 68(3): 263–283.

    Article  ADS  Google Scholar 

  9. Grena R., Tarquini P., Solar linear Fresnel collector using molten nitrates as heat transfer fluid. Energy, 2010, 36(2): 1048–1056.

    Article  Google Scholar 

  10. Evangelos B., Christos T., Angelos P., Secondary concentrator optimization of a linear Fresnel reflector using Bezier polynomial parametrization. Solar Energy, 2018, 171: 716–727.

    Article  Google Scholar 

  11. Zhu G., New adaptive method to optimize the secondary reflector of linear Fresnel collectors. Solar Energy, 2017, 144: 117–126.

    Article  ADS  Google Scholar 

  12. Prasad G., Reddy K.S., Sundararajan T., Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube. Solar Energy, 2017, 150: 1–12.

    Article  ADS  Google Scholar 

  13. Ma J., Wang C., Xia Y., Research progress on secondary concentrator for linear Fresnel reflector. Scientia Sinica Technologica, 2020, 50(08): 997–1008.

    Article  Google Scholar 

  14. Men J., Zhao X., Leng Y., Cheng X., He Y.L., Study on multi-objective optimization of optical comprehensive performance of linear Fresnel reflector concentrator. Journal of Engineeringsics Thermophy, 2020, 41(07): 1706–1711.

    Google Scholar 

  15. Lopez-Nunez O.A., Alfaro-Ayala J.A., Ramirez-Minguela J.J., et al., Optimization of a linear Fresnel reflector applying computational fluid dynamics, entropy generation rate and evolutionary programming. Renew Energy, 2020, 152: 698–712.

    Article  Google Scholar 

  16. Beltagy H., The effect of glass on the receiver and the use of two absorber tubes on optical performance of linear Fresnel solar concentrators. Energy, 2021, 224: 120111.

    Article  Google Scholar 

  17. Hack M., Zhu G., Wendelin T., Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs. Applied Energy, 2017, 208: 1441–1451.

    Article  Google Scholar 

  18. Liang K., Xue K., Zhang H., Chen H., Ni J., Design and performance analysis of an annular Fresnel solar concentrator. Energy, 2020, 210: 118594.

    Article  Google Scholar 

  19. Wang C., Ma J., Fang D., Arrangement and optimization of mirror field for linear Fresnel reflector system. Optical Precision Engineering, 2015, 23(01): 78–82.

    Article  Google Scholar 

  20. Winston R., Hinterberger H., Principles of cylindrical concentrators for solar energy. Solar Energy, 1975, 17(4): 255–258.

    Article  ADS  Google Scholar 

  21. Abbas R., Sebastián A., Montes M.J., et al., Optical features of linear Fresnel collectors with different secondary reflector technologies. Applied Energy, 2018, 232: 386–397.

    Article  Google Scholar 

  22. Wang Z., Tian R., Qi J., Li P., Wei Q., Structural design and optical performance of inverted trapezoidal cavity receiver. Acta Optica Sinica, 2017, 37(12): 331–340.

    Google Scholar 

  23. Zhao D., Zhao L., Deng S., Wang D., Lu Y., Shao Y., A quantitative evaluation method for uniformity of heat flux distribution in the parabolic trough collector. Science Bulletin, 2019, 64(04): 485–492.

    Google Scholar 

  24. Peng W., Hussein E., Sadaghiani O.K., Evaluation of heat flux distribution uniformity around the receiver tube of parabolic trough collector based on six statistical and geometrical indices. International Journal of Heat and Mass Transfer, 2021, 164: 120547.

    Article  Google Scholar 

  25. Weltens H., Bressler H., Terres F., Neumaier H., Rammoser D., Optimization of catalytic converter gas flow distribution by CFD prediction. International Congress & Exposition, 1993.

    Google Scholar 

  26. Shang W., A new indicator to reflect the degree of income difference-the residual expectation coefficient. Statistical Research, 2004, (01): 35–37.

    Google Scholar 

  27. Du C., Wang P., Ma C., Wu Y., Introduction and modeling application of Soltrace. Solar Energy, 2011, 21: 17–21, 46.

    Google Scholar 

  28. Du C., Wang P., Ma C., Wu Y., Optical geometric method for LFR mirror field arrangement without shading and blocking. Acta Optica Sinica, 2010, 30(11): 3276–3282.

    Article  Google Scholar 

  29. Du C., Wang P., Wu Y., Ma C., Radiation algorithm of linear Fresnel reflector mirror field. CIESC Journal, 2011, 62: 179–184.

    Google Scholar 

  30. Qiu Y., He Y., Cheng Z., Wang K., Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Applied Energy, 2015, 146: 162–173.

    Article  Google Scholar 

  31. Han, Y., Zhang, C., Wu, Y., Lu, Y., Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition. Renewable Energy, 2021, 175: 1041–1051.

    Article  Google Scholar 

Download references

Acknowledgment

This research has been financially supported by National Natural Science Foundation of China (NSFC) (51906003), Hebei province key research and development program (19214303D) and Inner Mongolia Science and Technology Major Project (2021SZD0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cancan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Qian, L., Zhang, C. et al. Comparative Study on Heat Flux and Temperature Distribution Performance of Linear Fresnel Collector Based on Uniformity Index. J. Therm. Sci. 31, 678–688 (2022). https://doi.org/10.1007/s11630-022-1613-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1613-x

Keywords

Navigation