Skip to main content

A Current Review on Linear Fresnel Reflector Technology and Its Applications in Power Plants

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering (ICRAME 2020)

Abstract

This review paper provides a short insight on the solar energy and concentrating collectors, and it mainly comprises with the latest studies available in the literature regarding the application of solar thermal energy in power plants, linear Fresnel reflector (LFR), and its various important aspects, for instance, importance of LFR among the parabolic trough collector (PTC), performance analysis of LFR, and its application with the power plants. After reviewing a broad literature, it has been examined that reasonable price and economic feasibility of LFR could make it more viable for power plants. Additionally, past studies on optimization and economic analysis also have been reviewed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avila-Marin, A.L., Fernandez-Reche, J., Tellez, F.M.: Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Appl. Energy 112, 274–288 (2013)

    Article  Google Scholar 

  2. Behar, O., Khellaf, A., Mohammedi, K.: A review of studies on central receiver solar thermal power plants. Renew. Sustain. Energy Rev. 23, 12–39 (2013)

    Article  Google Scholar 

  3. Lin, B., Ouyang, X.: Energy demand in china: comparison of characteristics between US and China in rapid urbanization stage. Energy Convers. Manage. 79, 128–139 (2014)

    Article  Google Scholar 

  4. Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A., Fayaz, H.: A review on global solar energy policy. Renew. Sustain. Energy Rev. 15(4), 2149–2163 (2011)

    Article  Google Scholar 

  5. Mekhilef, S., Saidur, R., Safari, A.: A review on solar energy use in industries. Renew. Sustain. Energy Rev. 15(4), 1777–1790 (2011)

    Article  Google Scholar 

  6. Saidur, R., BoroumandJazi, G., Mekhlif, S., Jameel, M.: Exergy analysis of solar energy applications. Renew. Sustain. Energy Rev. 16, 350–356 (2012)

    Article  Google Scholar 

  7. Leonard, M.D., Michaelides, E.E., Michaelides, D.N.: Substitution of coal power plants with renewable energy sources—shift of the power demand and energy storage. Energy Convers. Manage. 164, 27–35 (2018)

    Article  Google Scholar 

  8. Basunia, M.A., Abe, T.: Thin-layer solar drying characteristics of rough rice under natural convection. Food Eng. 47, 295–301 (2001)

    Article  Google Scholar 

  9. Lisbona, P., Bailera, M., Hills, T., Sceats, M., Díez, L.I., Romeo, L.M.: Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage. Renew. Energy 156, 1019–1027 (2020)

    Article  Google Scholar 

  10. Ma, Y., Morosuk, T., Luo, J., Liu, M., Liu, J.: Superstructure design and optimization on supercritical carbon dioxide cycle for application in concentrated solar power plant. Energy Convers. Manage. 206, 112290 (2020)

    Article  Google Scholar 

  11. Zhang, H.L., Baeyens, J., Degrève, J., Cacères, G.: Concentrated solar power plants: review and design methodology. Renew. Sustain. Energy Rev. 22, 466–481 (2013)

    Article  Google Scholar 

  12. Elmohlawy, A.E., Ochkov, V.F., Kazandzhan. B.I.: Thermal performance analysis of a concentrated solar powersystem (CSP) integrated with natural gas combined cycle (NGCC)power plant. Case Stud. Thermal Eng. 14, 100458 (2019)

    Google Scholar 

  13. Dersch, J., Geyer, M., Herrmann, U., Jones, S.A., Kelly, B., Kistner, R., Ortmanns, W., Pitz-Paal, R., Price, H.: Trough integration into power plants—a study on the performance of integrated solar combined cycle systems. Energy 29, 947–959 (2004)

    Article  Google Scholar 

  14. Bachelier, C., Stieglitz, R.: Design and optimisation of linear Fresnel power plants based on the direct molten salt concept. Sol. Energy 152, 171–192 (2017)

    Article  Google Scholar 

  15. Sait, H.H., Martinez-Val, J.M., Abbas, R., Munoz-Antonb, J.: Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: a comparison with parabolic trough collectors. Appl. Energy 141, 175–189 (2015)

    Article  Google Scholar 

  16. Ghodbane, M., Boumeddane, B., Said, Z., Bellos, E.: A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. J. Cleaner Prod. 231, 494–508 (2019)

    Article  Google Scholar 

  17. Jradi, M., Veje, C., Jørgensen, B.N.: Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector. Appl. Therm. Eng. 114, 360–373 (2017)

    Article  Google Scholar 

  18. Shabgard, H., Song, L., Zhu, W.: Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage. Energy Convers. Manage. 175, 121–131 (2018)

    Article  Google Scholar 

  19. Pinamonti, M., Baggio, P.: Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings. Renew. Energy 157, 90–99 (2020)

    Article  Google Scholar 

  20. Li, X., Wang, Z., Yang, M., Yuan, G.: Modeling and simulation of a novel combined heat and power system with absorption heat pump based on solar thermal power tower plant. Energy 186, 115842 (2019)

    Article  Google Scholar 

  21. Kizilkan, O., Yamaguchi, H.: Feasibility research on the novel experimental solar-assisted CO2 based Rankine cycle integrated with absorption refrigeration. Energy Convers. Manage. 205, 112390 (2020)

    Article  Google Scholar 

  22. Ehsan, M.M., Guan, Z., Gurgenci, H., Klimenko, A.: Novel design measures for optimizing the yearlong performance of a concentrating solar thermal power plant using thermal storage and a dry-cooled supercritical CO2 power block. Energy Convers. Manage. 216, 112980 (2020)

    Article  Google Scholar 

  23. Wang, X., Li, X., Li, Q., Liu, L., Liu, C.: Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions. Appl. Energy 261, 114359 (2020)

    Article  Google Scholar 

  24. Zeyghami, M., Khalili, F.: Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling. Energy Convers. Manage. 106, 10–20 (2015)

    Article  Google Scholar 

  25. Milani, R., Couto, L.C., Soria, R., Szklo, A., Lucena, A.F.P.: Promoting social development in developing countries through solar thermal power plants. J. Cleaner Prod. 246, 119072 (2020)

    Article  Google Scholar 

  26. Evangelisti, L., Lieto Vollaro, R.D., Asdrubali, F.: Latest advances on solar thermal collectors: a comprehensive review. Renew. Sustain. Energy Rev. 114, 109318 (2019)

    Article  Google Scholar 

  27. Buker, M.S., Riffat, S.B.: Building integrated solar thermal collectors—a review. Renew. Sustain. Energy Rev. 51, 327–346 (2015)

    Article  Google Scholar 

  28. Li, Q., Zheng, C., Shirazi, A., Mousa, O.B., Moscia, F., Scott, J.A., Taylor, R.A.: Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications. Appl. Energy 190, 1159–1173 (2017)

    Article  Google Scholar 

  29. Zhu, G., Wendelin, T., Wagner, M.J., Kutscher, C.: History, current state, and future of linear Fresnel concentrating solar collectors. Sol. Energy 103, 639–652 (2014)

    Article  Google Scholar 

  30. Morin, G., Karl, M., Mertins, M., Selig, M.: Molten salt as a heat transfer fluid in a linear Fresnel collector—commercial application backed by demonstration. Energy Proc. 69, 689–698 (2015)

    Article  Google Scholar 

  31. Bellos, E., Tzivanidis, C., Papadopoulos, A.: Daily, monthly and yearly performance of a linear Fresnel reflector. Solar Energy 173, 517–529 (2018)

    Google Scholar 

  32. Negi, B.S., Mathur, S.S., Kandpal, T.C.: Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator. Solar Wind Technol. 6(5), 589–593 (1989)

    Article  Google Scholar 

  33. Negi, B.S., Kandpal, T.C., Mathur, S.S.: Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber. Solar Wind Technol. 7, 379–392 (1990)

    Article  Google Scholar 

  34. Gordon, J.M., Ries, H.: Tailored edge-ray concentrators as ideal second stages for fresnel reflectors. Appl. Opt. 32, 2243–2251 (1993)

    Article  Google Scholar 

  35. Abbas, R., Montes, M.J., Piera, M., Martinez-Val, J.M.: Solar radiation concentration features in linear Fresnel reflector arrays. Energy Convers. Manage. 54, 133–144 (2012)

    Article  Google Scholar 

  36. Abbas, R., Munoz, J., Martinez-Val, J.M.: Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors. Appl. Energy 92, 503–515 (2012)

    Article  Google Scholar 

  37. Montes, M.J., Barbero, R., Abbas, R., Rovira, A.: Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver. Appl. Therm. Eng. 104, 162–175 (2016)

    Article  Google Scholar 

  38. Montes, M.J., Abbas, R., Muñoz, M., Muñoz-Antón, J., Martínez-Val, J.M.: Advances in the linear Fresnel single-tube receivers: hybrid loops with non-evacuated and evacuated receivers. Energy Convers. Manage. 149, 318–333 (2017)

    Article  Google Scholar 

  39. Nixon, J.D., Dey, P.K., Davies, P.A.: Design of a novel solar thermal collector using a multi-criteria decision-making methodology. J. Cleaner Prod. 59, 150–159 (2013)

    Article  Google Scholar 

  40. Munoz, J., Martinez-Val, J.M., Ramos, A.: Thermal regimes in solar-thermal linear collectors. Sol. Energy 85, 857–870 (2011)

    Article  Google Scholar 

  41. Rovira, A., Barbero, R., Montes, M.J., Abbas, R., Varela, F.: Analysis and comparison of integrated solar combined cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems. Appl. Energy 162, 990–1000 (2016)

    Article  Google Scholar 

  42. Momeni, S., Menbari, A., Alemrajabi, A.A., Mohammadi, P.: Theoretical performance analysis of new class of Fresnel concentrated solar thermal collector based on parabolic reflectors. Sustain. Energy Technol. Assessments 31, 25–33 (2019)

    Article  Google Scholar 

  43. Barbon, A., Bayon, L., Bayon-Cueli, C., Barbon, N.: A study of the effect of the longitudinal movement on the performance of small scale linear Fresnel reflectors. Renew. Energy 138, 128–138 (2019)

    Article  Google Scholar 

  44. Said, Z., Ghodbane, M., Hachicha, A.A., Boumeddane, B.: Optical performance assessment of a small experimental prototype of linear Fresnel reflector. Case Stud. Thermal Eng. 16, 100541 (2019)

    Article  Google Scholar 

  45. Dabwan, Y.N., Pei, G., Gao, G., Li, J., Feng, J.: Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant. Renew. Energy 138, 639–650 (2019)

    Article  Google Scholar 

  46. Sahoo, S.S., Singh, S., Banerjee, R.: Analysis of heat losses from a trapezoidal cavity used for Linear Fresnel reflector system. Sol. Energy 86, 1313–1322 (2012)

    Article  Google Scholar 

  47. Barbon, A., Bayon-Cueli, C., Bayon, L., Rodríguez, L.: Investigating the influence of longitudinal tilt angles on the performance of small scale linear Fresnel reflectors for urban applications. Renew. Energy 143, 1581–1593 (2019)

    Article  Google Scholar 

  48. Lin, M., Sumathy, K., Dai, Y.J., Wang, R.Z., Chen, Y.: Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Appl. Therm. Eng. 51, 963–972 (2013)

    Article  Google Scholar 

  49. Zhu, Y., Shi, J., Li, Y., Wang, L., Huang, Q., Xu, G.: Design and thermal performances of a scalable linear Fresnel reflector solar system. Energy Convers. Manage. 146, 174–181 (2017)

    Article  Google Scholar 

  50. Pulido-Iparraguirre, D., Valenzuela, L., Serrano-Aguilera, J.J., Fernández-García, A.: Optimized design of a linear Fresnel reflector for solar process heat applications. Renew. Energy 131, 1089–1106 (2019)

    Article  Google Scholar 

  51. Bellos, E., Tzivanidis, C.: Multi-criteria evaluation of a nanofluid-based linear Fresnel solar collector. Sol. Energy 163, 200–214 (2018)

    Article  Google Scholar 

  52. Wang, G., Wang, F., Shen, F., Chen, Z., Hu, P.: Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector. Energy 180, 133–148 (2019)

    Article  Google Scholar 

  53. Dabwan, Y.N., Mokheimer, E.M.A.: Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant. Energy Convers. Manage. 148, 830–843 (2017)

    Article  Google Scholar 

  54. Sait, H.H., Martinez-Val, J.M., Abbas, R., Munoz-Anton, J.: Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: a comparison with parabolic trough collectors. Appl. Energy 141, 175–189 (2015)

    Article  Google Scholar 

  55. Marefati, M., Mehrpooya, M., Mousavi, S.A.: Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process. Int. J. Hydrogen Energy 44, 30256–30279 (2019)

    Article  Google Scholar 

  56. Alhaj, M., Al-Ghamdi, S.G.: Reducing electric energy consumption in linear Fresnel collector solar fields coupled to thermal desalination plants by optimal mirror defocusing. Heliyon 4, e00813 (2018)

    Article  Google Scholar 

  57. Bishoyi, D., Sudhakar, K.: Modeling and performance simulation of 100 MW LFR based solar thermal power plant in Udaipur India. Resource-Efficient Technol. 3, 365–377 (2017)

    Article  Google Scholar 

  58. Marefati, M., Mehrpooya, M.: Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. J. Cleaner Prod. 240, 118247 (2019)

    Article  Google Scholar 

  59. Xu, G., Song, G., Zhu, X., Gao, W., Li, H., Quan, Y.: Performance evaluation of a direct vapor generation supercritical ORC system driven by linear Fresnel reflector solar concentrator. Appl. Therm. Eng. 80, 196–204 (2015)

    Article  Google Scholar 

  60. Bellos, E., Tzivanidis, C., Papadopoulos, A.: Secondary concentrator optimization of a linear Fresnel reflector using Bezier polynomial parametrization. Sol. Energy 171, 716–727 (2018)

    Article  Google Scholar 

  61. Ajdad, H., Filali Baba, Y., Al Mers, A., Merroun, O., Bouatem, A., Boutammachte, N.: Particle swarm optimization algorithm for optical-geometric optimization of linear Fresnel solar concentrators. Renew. Energy 130, 992–1001 (2019)

    Article  Google Scholar 

  62. Moghimi, M.A., Craig, K.J., Meyer, J.P.: Optimization of a trapezoidal cavity absorber for the linear Fresnel reflector. Sol. Energy 119, 343–361 (2015)

    Article  Google Scholar 

  63. Vouros, A., Mathioulakis, E., Papanicolaou, E., Belessiotis, V.: On the optimal shape of secondary reflectors for linear Fresnel collectors. Renew. Energy 143, 1454–1464 (2019)

    Article  Google Scholar 

  64. Marugán-Cruz, C., Serrano, D., Gómez-Hernández, J., Sánchez-Delgado, S.: Solar multiple optimization of a DSG linear Fresnel power plant. Energy Convers. Manage. 184, 571–580 (2019)

    Article  Google Scholar 

  65. Boito, P., Grena, R.: Optimization of the geometry of Fresnel linear collectors. Sol. Energy 135, 479–486 (2016)

    Article  Google Scholar 

  66. Soomro, M.I., Kim, W.S.: Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system. Renew. Energy 129, 561–569 (2018)

    Article  Google Scholar 

  67. Askari, I.B., Ameri, M.: Techno economic feasibility analysis of linear Fresnel solar field as thermal source of the MED/TVC desalination system. Desalination 394, 1–17 (2016)

    Article  Google Scholar 

  68. Khajepour, S., Ameri, M.: Techno-economic analysis of using three Fresnel solar fields coupled to a thermal power plant for different cost of natural gas. Renew. Energy 146, 2243–2254 (2020)

    Article  Google Scholar 

  69. Barbon, A., Sanchez-Rodríguez, J.A., Bayon, L., Bayon-Cueli, C.: Cost estimation relationships of a small scale linear Fresnel reflector. Renew. Energy 134, 1273–1284 (2019)

    Article  Google Scholar 

  70. Bayon-Cueli, C., Barbon, A., Bayon, L., Barbon, N.: A cost-energy based methodology for small-scale linear Fresnel reflectors on flat roofs of urban buildings. Renew. Energy 146, 944–956 (2020)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harwinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, H., Singh, A., Mishra, R.S., Pal, A. (2021). A Current Review on Linear Fresnel Reflector Technology and Its Applications in Power Plants. In: Kumar, A., Pal, A., Kachhwaha, S.S., Jain, P.K. (eds) Recent Advances in Mechanical Engineering . ICRAME 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9678-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9678-0_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9677-3

  • Online ISBN: 978-981-15-9678-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics