Skip to main content
Log in

Multi-Scale Numerical Simulation of Flow, Heat and Mass Transfer Behaviors in Dense Gas-Solid Flows: A Brief Review

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Dense gas-solid flows are very common in actual production and industrial fields, so it is significant to understand their hydrodynamic characteristics and heat and mass transfer behaviors. This article provides a brief review of multi-scale numerical simulation of flow, heat and mass transfer behaviors in dense gas-solid flows. It describes multiscale models (direct numerical simulation, discrete particle model, and two-fluid model) and the results of related research. Finally, it discusses possible future developments in research on the flow, heat and mass transfer characteristics of dense gas-solid two-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A p :

area of the particle/m2

AR :

aspect ratio

C p,g :

specific heat capacity of the gas phase/J·kg−1·K−1

C p,p :

specific heat capacity of the particle/J·kg−1·K−1

D :

rate of strain tensor of the solid phase/s−1

d p :

particle diameter/m

e pp :

coefficient of restitution between particles

F c :

contact force/N

F d :

drag force/N

F other :

other force/N

g :

gravitational acceleration/m·s2

h :

heat transfer coefficient/W·m−2·K−1

I :

unit tensor

I p :

moment of inertia/kg·m2

m p :

particle mass/kg

N c :

number of particles in the cell

Nu :

Nusselt number

Pr :

Prandtl number

p s :

solid phase pressure/Pa

p f s :

solid frictional pressure/Pa

Q pg :

heat transfer rate of particle-fluid convection/W

Q pp :

heat transfer rate of particle-particle conduction/W

Q pr :

heat transfer rate of radiation/W

r c :

particle-particle contact radius/m

r p :

position of particle center/m

Re :

Reynolds number

S p :

momentum exchange source term/kg·m−2·s−2

T :

torque/N·m

T g :

temperature of the gas phase/K

T p :

temperature of the particle/K

T r :

relative temperature between particles/K

t :

time/s

u g :

gas velocity/m·s−1

u s :

solid velocity/m·s−1

V c :

fluid cell volume/m3

V p :

particle volume/m3

v p :

particle translational velocity/m·s−1

CFD:

computational fluid dynamics

CFM:

continuous force method

CLC:

chemical looping combustion

c:

contact

DEM:

discrete element method

DFM:

direct force method

DNS:

direct numerical simulation

DPM:

discrete particle model

ECT:

electrical capacitance tomography

EMMS:

energy-minimization multi-scale

eff:

effective

f:

fluid

g:

gas phase

IBM:

immersed boundary method

L:

local coordinate system

LBM:

lattice Boltzmann method

LDV:

laser Doppler velocimetry

MPT:

magnetic particle tracking

N-S:

Navier-Stokes

PDPA:

phase Doppler particle analysis

PEPT:

positron emission particle tracking

PIV:

particle image velocimetry

p:

particle

s:

solid phase

TFM:

two-fluid model

β :

drag coefficient/kg·m3·s−1

γ θs :

collisional dissipation rate of energy/kg·m−3·s−1

ε g :

volume fraction of the gas phase

ε p :

particle emissivity

ε s :

volume fraction of the solid phase

θ s :

granular temperature/m2·s2

κ :

thermal conductivity/W·m−1·K−1

λ g :

thermal conductivity of the gas phase/W·m−1·K−1

λ s :

solid bulk viscosity/Pa·s

μ :

shear viscosity/Pa·s

ρ :

density/kg·m−3

σ :

Stefan-Boltzmann constant/J·K−1

τ :

stress tensor/Pa

ω :

rotational velocity/rad·s−1

References

  1. Deen N.G., Kuipers J.A.M., Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems. Industrial and Engineering Chemistry Research, 2013, 52(33): 11266–11274. DOI: https://doi.org/10.1021/ie303411k

    Article  Google Scholar 

  2. Wang J., Continuum theory for dense gas-solid flow: A state-of-the-art review. Chemical Engineering Science, 2020, 215: 115428. DOI: https://doi.org/10.1016/j.ces.2019.115428

    Article  Google Scholar 

  3. Malcus S., Chaplin G., Pugsley T., The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT). Chemical Engineering Science, 2000, 55(19): 4129–4138. DOI: https://doi.org/10.1016/S0009-2509(00)00083-X

    Article  Google Scholar 

  4. Liu S., Chen Q., Wang H.G., Jiang F., Ismail I., Yang W.Q., Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds. Flow Measurement and Instrumentation, 2005, 16(2–3): 135–144. DOI: https://doi.org/10.1016/j.flowmeasinst.2005.02.013

    Article  Google Scholar 

  5. Mychkovsky A.G., Ceccio S.L., LDV measurements and analysis of gas and particulate phase velocity profiles in a vertical jet plume in a 2D bubbling fluidized bed Part III: The effect of fluidization. Powder Technology, 2012, 220: 37–46. DOI: https://doi.org/10.1016/j.powtec.2011.09.029

    Article  Google Scholar 

  6. Liu X., Gao S., Li J., Characterizing particle clustering behavior by PDPA measurement for dilute gas-solid flow. Chemical Engineering Journal, 2005, 108(3): 193–202. DOI: https://doi.org/10.1016/j.cej.2005.01.012

    Article  Google Scholar 

  7. Hoomans B.P.B., Kuipers J.A.M., Mohd Salleh M.A., Stein M., Seville J.P.K., Experimental validation of granular dynamics simulations of gas-fluidised beds with homogenous in-flow conditions using Positron Emission Particle Tracking. Powder Technology, 2001, 116(2–3): 166–177. DOI: https://doi.org/10.1016/S0032-5910(00)00391-0

    Article  Google Scholar 

  8. Van de Velden M., Baeyens J., Seville J.P.K., Fan X., The solids flow in the riser of a Circulating Fluidised Bed (CFB) viewed by Positron Emission Particle Tracking (PEPT). Powder Technology, 2008, 183(2): 290–296. DOI: https://doi.org/10.1016/j.powtec.2007.07.027

    Article  Google Scholar 

  9. Buist K.A., Jayaprakash P., Kuipers J.A.M., Deen N.G., Padding J.T., Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. AIChE Journal, 2017, 63(12): 5335–5342. DOI: https://doi.org/10.1002/aic.15854

    Article  Google Scholar 

  10. Link J., Zeilstra C., Deen N., Kuipers H., Validation of a discrete particle model in a 2D spout-fluid bed using non-intrusive optical measuring techniques. Canadian Journal of Chemical Engineering, 2004, 82(1): 30–36. DOI: https://doi.org/10.1002/cjce.5450820105

    Article  Google Scholar 

  11. van der Hoef M.A., Ye M., van Sint Annaland M., Andrews A.T., Sundaresan S., Kuipers J.A.M., Multiscale modeling of gas-fluidized beds. Advances in Chemical Engineering, 2006, 31(06): 65–149. DOI: https://doi.org/10.1016/S0065-2377(06)31002-2

    Article  Google Scholar 

  12. Deen N.G., Van Sint Annaland M., Van der Hoef M.A., Kuipers J.A.M., Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 2007, 62(1–2): 28–44. DOI: https://doi.org/10.1016/j.ces.2006.08.014

    Article  MATH  Google Scholar 

  13. Deen N.G., Peters E.A.J.F., Padding J.T., Kuipers J.A.M., Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows. Chemical Engineering Science, 2014, 116: 710–724. DOI: https://doi.org/10.1016/j.ces.2014.05.039

    Article  Google Scholar 

  14. Bhatnagar P.L., Gross E.P., Krook M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954, 94(3): 511–525. DOI: https://doi.org/10.1103/PhysRev.94.511

    Article  ADS  MATH  Google Scholar 

  15. Qian Y.H., D’Humières D., Lallemand P., Lattice BGK models for navier-stokes equation. Europhysics Letters, 1992, 17(6): 479–484. DOI: https://doi.org/10.1209/0295-5075/17/6/001

    Article  ADS  MATH  Google Scholar 

  16. Wang L.P., Min H., Peng C., Geneva N., Guo Z., A Lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice. Computers and Mathematics with Applications, 2019, 78(4): 1053–1075. DOI: https://doi.org/10.1016/j.camwa.2016.06.017

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladd A.J., Numerical simulations of particulate suspensions via a Discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 1994, 271: 285–309. DOI: https://doi.org/10.1017/S0022112094001771

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ladd A.J., Numerical simulations of particulate suspensions via a Discretized Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics, 1994, 271: 311–339. DOI: https://doi.org/10.1017/S0022112094001783

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hill R.J., Koch D.L., Ladd A.J.C., Moderate-Reynolds-number flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 2001, 448: 243–278. DOI: https://doi.org/10.1017/s0022112001005936

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Van der Hoef M.A., Beetstra R., Kuipers J.A.M., Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: Results for the permeability and drag force. Journal of Fluid Mechanics, 2005, 528: 233–254. DOI: https://doi.org/10.1017/S0022112004003295

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Beetstra R., van der Hoef M.A., Kuipers J.A.M., Numerical study of segregation using a new drag force correlation for polydisperse systems derived from Lattice-Boltzmann simulations. Chemical Engineering Science, 2007, 62(1–2): 246–255. DOI: https://doi.org/10.1016/j.ces.2006.08.054

    Article  Google Scholar 

  22. Beetstra R., Van Der Hoef M.A., Kuipers J.A.M., Drag force of intermediate reynolds number flow past mono-And bidisperse arrays of spheres. AIChE Journal, 2007, 53(2): 489–501. DOI: https://doi.org/10.1002/aic.11065

    Article  Google Scholar 

  23. Peskin C.S., Numerical analysis of blood flow in the heart. Journal of Computational Physics, 1977, 25(3): 220–252. DOI: https://doi.org/10.1016/0021-9991(77)90100-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Peskin C.S., Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 1972, 10(2): 252–271. DOI: https://doi.org/10.1016/0021-9991(72)90065-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Uhlmann M., An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 2005, 209(2): 448–476. DOI: https://doi.org/10.1016/j.jcp.2005.03.017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Feng Z.G., Michaelides E.E., Robust treatment of no-slip boundary condition and velocity updating for the Lattice-Boltzmann simulation of particulate flows. Computers and Fluids, 2009, 38(2): 370–381. DOI: https://doi.org/10.1016/j.compfluid.2008.04.013

    Article  MATH  Google Scholar 

  27. Kriebitzsch S.H.L., van der Hoef M.A., Kuipers J.A.M., Drag force in discrete particle models-Continuum scale or single particle scale? AIChE Journal, 2013, 59(1): 316–324. DOI: https://doi.org/10.1002/aic.13804

    Article  Google Scholar 

  28. Feng Z.G., Michaelides E.E., Inclusion of heat transfer computations for particle laden flows. Physics of Fluids, 2008, 20: 040604. DOI: https://doi.org/10.1063/1.2911022

    Article  ADS  MATH  Google Scholar 

  29. Feng Z.G., Michaelides E.E., Heat transfer in particulate flows with Direct Numerical Simulation (DNS). International Journal of Heat and Mass Transfer, 2009, 52(3–4): 777–786. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.023

    Article  MATH  Google Scholar 

  30. Deen N.G., Kriebitzsch S.H.L., van der Hoef M.A., Kuipers J.A.M., Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chemical Engineering Science, 2012, 81: 329–344. DOI: https://doi.org/10.1016/j.ces.2012.06.055

    Article  Google Scholar 

  31. Tavassoli H., Kriebitzsch S.H.L., van der Hoef M.A., Peters E.A.J.F., Kuipers J.A.M., Direct numerical simulation of particulate flow with heat transfer. International Journal of Multiphase Flow, 2013, 57: 29–37. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.06.009

    Article  Google Scholar 

  32. Shao X., Shi Y., Yu Z., Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer. International Journal of Heat and Mass Transfer, 2012, 55(23–24): 6775–6785. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.085

    Article  Google Scholar 

  33. Hoomans B.P.B., Kuipers J.A.M., Briels W.J., Swaaij W.P.M.V.A.N., Discrete particle simulation of bubble and slug formation in a 2D gas-fluidised bed: A hard-sphere approach. Science, 1996, 51(1): 99–118.

    Google Scholar 

  34. Cundall P.A., Strack O.D.L., A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47–65. DOI: https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  35. Tsuji Y., Kawaguchi T., Tanaka T., Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 1993, 77(1): 79–87. DOI: https://doi.org/10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  36. Takeuchi S., Wang S., Rhodes M., Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system. Chemical Engineering Science, 2004, 59(17): 3495–3504. DOI: https://doi.org/10.1016/j.ces.2004.03.027

    Article  Google Scholar 

  37. He Y., Peng W., Tang T., Yan S., Zhao Y., DEM numerical simulation of wet cohesive particles in a spout fluid bed. Advanced Powder Technology, 2016, 27(1): 93–104. DOI: https://doi.org/10.1016/j.apt.2015.10.022

    Article  Google Scholar 

  38. Link J.M., Cuypers L.A., Deen N.G., Kuipers J.A.M., Flow regimes in a spout-fluid bed: A combined experimental and simulation study. Chemical Engineering Science, 2005, 60(13): 3425–3442. DOI: https://doi.org/10.1016/j.ces.2005.01.027

    Article  Google Scholar 

  39. van Buijtenen M.S., van Dijk W.J., Deen N.G., Kuipers J.A.M., Leadbeater T., Parker D.J., Numerical and experimental study on multiple-spout fluidized beds. Chemical Engineering Science, 2011, 66(11): 2368–2376. DOI: https://doi.org/10.1016/j.ces.2011.02.055

    Article  Google Scholar 

  40. Tang T., He Y., Tai T., Wen D., DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. Chemical Engineering Science, 2017, 172: 79–99. DOI: https://doi.org/10.1016/j.ces.2017.06.025

    Article  Google Scholar 

  41. Müller C.R., Holland D.J., Sederman A.J., Scott S.A., Dennis J.S., Gladden L.F., Granular temperature: Comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology, 2008, 184(2): 241–253. DOI: https://doi.org/10.1016/j.powtec.2007.11.046

    Article  Google Scholar 

  42. Sakai M., Abe M., Shigeto Y., Mizutani S., Takahashi H., Viré A., Percival J.R., Xiang J., Pain C.C., Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chemical Engineering Journal, 2014, 244: 33–43. DOI: https://doi.org/10.1016/j.cej.2014.01.029

    Article  Google Scholar 

  43. Patil A. V., Peters E.A.J.F., Kuipers J.A.M., Comparison of CFD-DEM heat transfer simulations with infrared/visual measurements. Chemical Engineering Journal, 2015, 277: 388–401. DOI: https://doi.org/10.1016/j.cej.2015.04.131

    Article  Google Scholar 

  44. Syamlal M., Gidaspow D., Hydrodynamics of fluidization: Prediction of wall to bed heat transfer coefficients. AIChE Journal, 1985, 31(1): 127–135. DOI: https://doi.org/10.1002/aic.690310115

    Article  Google Scholar 

  45. Kruggel-Emden H., Simsek E., Rickelt S., Wirtz S., Scherer V., Review and extension of normal force models for the Discrete Element Method. Powder Technology, 2007, 171(3): 157–173. DOI: https://doi.org/10.1016/j.powtec.2006.10.004

    Article  Google Scholar 

  46. Kruggel-Emden H., Wirtz S., Scherer V., An analytical solution of different configurations of the linear viscoelastic normal and frictional-elastic tangential contact model. Chemical Engineering Science, 2007, 62(23): 6914–6926. DOI: https://doi.org/10.1016/j.ces.2007.08.049

    Article  Google Scholar 

  47. van Wachem B., Zastawny M., Zhao F., Mallouppas G., Modelling of gas-solid turbulent channel flow with non-spherical particles with large Stokes numbers. International Journal of Multiphase Flow, 2015, 68: 80–92. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.006

    Article  MathSciNet  Google Scholar 

  48. Gidaspow D., Multiphase flow and fluidization—Continuum and kinetic theory descriptions. The first edition. Academic Press, 1994.

  49. Wen C.Y., Yu Y.H., Mechanics of fluidization. Chemical Engineering Progress (Symposium Series), 1966, 62(1): 100–111.

    Google Scholar 

  50. Ergun S., Fluid flow through packed columns. Journal of Chemical Engineering Progress, 1952, 48: 89–94. DOI: citeulike-article-id:7797897

    Google Scholar 

  51. Di Felice R., The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 1994, 20(1): 153–159. DOI: https://doi.org/10.1016/0301-9322(94)90011-6

    Article  MATH  Google Scholar 

  52. Hölzer A., Sommerfeld M., New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 2008, 184(3): 361–365. DOI: https://doi.org/10.1016/j.powtec.2007.08.021

    Article  Google Scholar 

  53. Li J., Mason D.J., A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technology, 2000, 112(3): 273–282. DOI: https://doi.org/10.1016/S0032-5910(00)00302-8

    Article  Google Scholar 

  54. Gunn D.J., Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer, 1978, 21(4): 467–476. DOI: https://doi.org/10.1016/0017-9310(78)90080-7

    Article  Google Scholar 

  55. Zhou H., Flamant G., Gauthier D., Flitris Y., Simulation of coal combustion in a bubbling fluidized bed by distinct element method. Chemical Engineering Research and Design, 2003, 81(9): 1144–1149. DOI: https://doi.org/10.1205/026387603770866308

    Article  Google Scholar 

  56. Gidaspow D., Applications of kinetic theory. Multiphase Flow and Fluidization, 1994, pp. 297–336. DOI: https://doi.org/10.1016/b978-0-08-051226-6.50014-5

  57. Anderson T.B., Jackson R., Fluid mechanical description of fluidized beds: Equations of motion. Industrial and Engineering Chemistry Fundamentals, 1967, 6(4): 527–539. DOI: https://doi.org/10.1021/i160024a007

    Article  Google Scholar 

  58. Elghobashi S.E., Abou-Arab T.W., A two-equation turbulence model for two-phase flows. Physics of Fluids, 1983, 26(4): 931–938. DOI: https://doi.org/10.1063/1.864243

    Article  ADS  MATH  Google Scholar 

  59. Chen C.P., Studies in two-phase turbulence closure modeling. Michigan State University, USA, 1985.

    Google Scholar 

  60. Patil D.J., Smit J., Van Sint Annaland M., Kuipers J.A.M., Wall-to-bed heat transfer in gas-solid bubbling fluidized beds. AIChE Journal, 2006, 52(1): 58–74. DOI: 10.1002/aic.10590

    Article  Google Scholar 

  61. Lun C.K.K., Savage S.B., Jeffrey D.J., Chepurniy N., Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 1984, 140: 223–256. DOI: https://doi.org/10.1017/S0022112084000586

    Article  ADS  MATH  Google Scholar 

  62. Johnson P.C., Nott P., Jackson R., Frictional-collisional equations of motion for particulate flows and their application to chutes. Journal of Fluid Mechanics, 1990, 210(501): 501–535. DOI: https://doi.org/10.1017/S0022112090001380

    Article  ADS  Google Scholar 

  63. Lu H.L., Gidaspow D., Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chemical Engineering Science, 2003, 58(16): 3777–3792. DOI: https://doi.org/10.1016/S0009-2509(03)00238-0

    Article  Google Scholar 

  64. Li J.H., Cheng C., Zhang Z., Yuan J., Nemet A., Fett F.N., The EMMS model—its application, development and updated concepts. Chemical Engineering Science, 1999, 54(22): 5409–5425. DOI: https://doi.org/10.1016/s0009-2509(99)00274-2

    Article  Google Scholar 

  65. Kuipers J.A.M., Prins W., Van Swaaij W.P.M., Numerical calculation of wall-to-bed heat-transfer coefficients in gas-fluidized beds. AIChE Journal, 1992, 38(7): 1079–1091. DOI: https://doi.org/10.1002/aic.690380711

    Article  Google Scholar 

  66. Lin J.Z., Zhang W.F., Yu Z.S., Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows. Journal of Aerosol Science, 2004, 35(1): 63–82. DOI: https://doi.org/10.1016/S0021-8502(03)00388-4

    Article  ADS  Google Scholar 

  67. Guan Y., Guadarrama-Lara R., Jia X., Zhang K., Wen D., Lattice Boltzmann simulation of flow past a non-spherical particle. Advanced Powder Technology, 2017, 28(6): 1486–1494. DOI: https://doi.org/10.1016/j.apt.2017.03.018

    Article  Google Scholar 

  68. Zhang N., Rong L.W., Dong K.J., Zeng Q.D., Fluid flow and heat transfer characteristics over a superelliptic cylinder at incidence. Powder Technology, 2020, 360: 193–208. DOI: https://doi.org/10.1016/j.powtec.2019.09.076

    Article  Google Scholar 

  69. Wang Z., Fan J., Luo K., Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. International Journal of Multiphase Flow, 2008, 34(3): 283–302. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.004

    Article  Google Scholar 

  70. Wang L., Guo Z.L., Mi J.C., Drafting, kissing and tumbling process of two particles with different sizes. Computers and Fluids, 2014, 96: 20–34. DOI: https://doi.org/10.1016/j.compfluid.2014.03.005

    Article  MathSciNet  MATH  Google Scholar 

  71. Koch D.L., Ladd A.J.C., Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. Journal of Fluid Mechanics, 1997, 349: 31–66. DOI: https://doi.org/10.1017/S002211209700671X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Sarkar S., van der Hoef M.A., Kuipers J.A.M., Fluid-particle interaction from lattice Boltzmann simulations for flow through polydisperse random arrays of spheres. Chemical Engineering Science, 2009, 64(11): 2683–2691. DOI: https://doi.org/10.1016/j.ces.2009.02.045

    Article  Google Scholar 

  73. Yin X., Sundaresan S., Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions. AIChE Journal, 2009, 55(6): 1352–1368. DOI: https://doi.org/10.1002/aic.11800

    Article  Google Scholar 

  74. Tenneti S., Garg R., Subramaniam S., Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. International Journal of Multiphase Flow, 2011, 37(9): 1072–1092. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.010

    Article  Google Scholar 

  75. Yali Tang Y., Frank Peters E.A.J.F., Hans Kuipers J.A.M., Sebastian Kriebitzsch S.H.L., Martin van der Hoef M.A., A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE Journal, 2015, 61(2): 688–698. DOI: https://doi.org/10.1002/aic.14645

    Article  Google Scholar 

  76. Rong L.W., Dong K.J., Yu A.B., Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity. Chemical Engineering Science, 2013, 99: 44–58. DOI: https://doi.org/10.1016/j.ces.2013.05.036

    Article  Google Scholar 

  77. Rong L.W., Dong K.J., Yu A.B., Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: Effect of particle size distribution. Chemical Engineering Science, 2014, 116: 508–523. DOI: https://doi.org/10.1016/j.ces.2014.05.025

    Article  Google Scholar 

  78. Kravets B., Rosemann T., Reinecke S.R., Kruggel-Emden H., A new drag force and heat transfer correlation derived from direct numerical LBM-simulations of flown through particle packings. Powder Technology, 2019, 345: 438–456. DOI: https://doi.org/10.1016/j.powtec.2019.01.028

    Article  Google Scholar 

  79. Rubinstein G.J., Derksen J.J., Sundaresan S., Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: Effect of Stokes number on drag force. Journal of Fluid Mechanics, 2016, 788: 576–601. DOI: https://doi.org/10.1017/jfm.2015.679

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Duan F., Zhao L., Chen X., Zhou Q., Fluid-particle drag and particle-particle drag in low-Reynolds-number bidisperse gas-solid suspensions. Physics of Fluids, 2020, 32(11): 113311. DOI: https://doi.org/10.1063/5.0023874

    Article  ADS  Google Scholar 

  81. Tavanashad V., Passalacqua A., Subramaniam S., Particle-resolved simulation of freely evolving particle suspensions: Flow physics and modeling. International Journal of Multiphase Flow, 2021, 135: 103533. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103533

    Article  MathSciNet  Google Scholar 

  82. Shardt O., Derksen J.J., Direct simulations of dense suspensions of non-spherical particles. International Journal of Multiphase Flow, 2012, 47: 25–36. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2012.06.007

    Article  Google Scholar 

  83. Rong L.W., Zhou Z.Y., Yu A.B., Lattice-Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids. Powder Technology, 2015, 285: 146–156. DOI: https://doi.org/10.1016/j.powtec.2015.06.047

    Article  Google Scholar 

  84. Chen Y., Müller C.R., Development of a drag force correlation for assemblies of cubic particles: The effect of solid volume fraction and Reynolds number. Chemical Engineering Science, 2018, 192: 1157–1166. DOI: https://doi.org/10.1016/j.ces.2018.08.027

    Article  Google Scholar 

  85. Cao Z., Tafti D.K., Shahnam M., Development of drag correlation for suspensions of ellipsoidal particles. Powder Technology, 2020, 369: 298–310. DOI: https://doi.org/10.1016/j.powtec.2020.05.049

    Article  Google Scholar 

  86. Sanjeevi S.K.P., Padding J.T., Hydrodynamic forces on monodisperse assemblies of axisymmetric elongated particles: Orientation and voidage effects. AIChE Journal, 2020, 66(6): 1–20. DOI: https://doi.org/10.1002/aic.16951

    Article  Google Scholar 

  87. Song S., Rong L., Dong K., Shen Y., Numerical investigation of drag property for fluid flow through random arrays of elliptical cylinders. Powder Technology, 2021, 380: 539–552. DOI: https://doi.org/10.1016/j.powtec.2020.11.003

    Article  Google Scholar 

  88. Wakao N., Kaguei S., Funazkri T., Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Correlation of nusselt numbers. Chemical Engineering Science, 1979, 34(3): 325–336. DOI: https://doi.org/10.1016/0009-2509(79)85064-2

    Article  Google Scholar 

  89. Tavassoli H., Peters E.A.J.F., Kuipers J.A.M., Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles. Chemical Engineering Science, 2015, 129: 42–48. DOI: https://doi.org/10.1016/j.ces.2015.02.024

    Article  Google Scholar 

  90. Sun B., Tenneti S., Subramaniam S., Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation. International Journal of Heat and Mass Transfer, 2015, 86: 898–913. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.046

    Article  Google Scholar 

  91. He L., Tafti D.K., Heat transfer in an assembly of ellipsoidal particles at low to moderate Reynolds numbers. International Journal of Heat and Mass Transfer, 2017, 114: 324–336. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.068

    Article  Google Scholar 

  92. Singhal A., Cloete S., Radl S., Quinta-Ferreira R., Amini S., Heat transfer to a gas from densely packed beds of monodisperse spherical particles. Chemical Engineering Journal, 2017, 314: 27–37. DOI: https://doi.org/10.1016/j.cej.2016.12.124

    Article  Google Scholar 

  93. Singhal A., Cloete S., Radl S., Quinta-Ferreira R., Amini S., Heat transfer to a gas from densely packed beds of cylindrical particles. Chemical Engineering Science, 2017, 172: 1–12. DOI: https://doi.org/10.1016/j.ces.2017.06.003

    Article  Google Scholar 

  94. Dong Y., Sosna B., Korup O., Rosowski F., Horn R., Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chemical Engineering Journal, 2017, 317: 204–214. DOI: https://doi.org/10.1016/j.cej.2017.02.063

    Article  Google Scholar 

  95. Guo Z., Sun Z., Zhang N., Ding M., Influence of confining wall on pressure drop and particle-to-fluid heat transfer in packed beds with small D/d ratios under high Reynolds number. Chemical Engineering Science, 2019, 209: 115200. DOI: https://doi.org/10.1016/j.ces.2019.115200

    Article  Google Scholar 

  96. Chen Y., Müller C.R., Gas-solid heat transfer in assemblies of cubes for ReV≤100. Chemical Engineering Science, 2020, 216: 115478. DOI: https://doi.org/10.1016/j.ces.2020.115478

    Article  Google Scholar 

  97. Chang Q., Yang L., Ge W., Fluid-particle heat transfer in static assemblies: Effect of particle shape. International Journal of Heat and Mass Transfer, 2021, 166: 120730. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120730

    Article  Google Scholar 

  98. Moghaddam E.M., Foumeny E.A., Stankiewicz A.I., Padding J.T., Heat transfer from wall to dense packing structures of spheres, cylinders and Raschig rings. Chemical Engineering Journal, 2021, 407: 127994. DOI: https://doi.org/10.1016/j.cej.2020.127994

    Article  Google Scholar 

  99. Tang T., He Y., Ren A., Wang T., Experimental study and DEM numerical simulation of Dry/Wet particle flow behaviors in a spouted bed. Industrial and Engineering Chemistry Research, 2019, 58(33): 15353–15367. DOI: https://doi.org/10.1021/acs.iecr.9b02448

    Article  Google Scholar 

  100. Wang T., Tang T., He Y., Yi H., Analysis of particle behaviors using a region-dependent method in a jetting fluidized bed. Chemical Engineering Journal, 2016, 283: 127–140. DOI: https://doi.org/10.1016/j.cej.2015.07.038

    Article  Google Scholar 

  101. Wang T., He Y., Yan S., Kim D.R., Rotation characteristic and granular temperature analysis in a bubbling fluidized bed of binary particles. Particuology, 2015, 18: 76–88. DOI: https://doi.org/10.1016/j.partic.2014.02.011

    Article  Google Scholar 

  102. Luo K., Yang S., Fang M., Fan J., Cen K., LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part I: Hydrodynamics. Powder Technology, 2014, 256: 385–394. DOI: https://doi.org/10.1016/j.powtec.2013.11.039

    Article  Google Scholar 

  103. Yang S., Luo K., Fang M., Fan J., LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part II: Solid dispersion and circulation properties. Powder Technology, 2014, 256: 395–403. DOI: https://doi.org/10.1016/j.powtec.2013.12.049

    Article  Google Scholar 

  104. Yang S., Luo K., Fang M., Zhang K., Fan J., Parallel CFD-DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate. Chemical Engineering Journal, 2014, 236: 158–170. DOI: https://doi.org/10.1016/j.cej.2013.09.082

    Article  Google Scholar 

  105. Yang S., Luo K., Fang M., Fan J., Discrete element simulation of the hydrodynamics in a 3D spouted bed: Influence of tube configuration. Powder Technology, 2013, 243: 85–95. DOI: https://doi.org/10.1016/j.powtec.2013.03.041

    Article  Google Scholar 

  106. Liu R.J., Xiao R., Ye M., Liu Z., Analysis of particle rotation in fluidized bed by use of discrete particle model. Advanced Powder Technology, 2018, 29(7): 1655–1663. DOI: https://doi.org/10.1016/j.apt.2018.03.032

    Article  Google Scholar 

  107. Song C., Liu D., Ma J., Chen X., CFD-DEM simulation of flow pattern and particle velocity in a fluidized bed with wet particles. Powder Technology, 2017, 314: 346–354. DOI: https://doi.org/10.1016/j.powtec.2016.10.044

    Article  Google Scholar 

  108. Hilton J.E., Mason L.R., Cleary P.W., Dynamics of gas-solid fluidised beds with non-spherical particle geometry. Chemical Engineering Science, 2010, 65(5): 1584–1596. DOI: https://doi.org/10.1016/j.ces.2009.10.028

    Article  Google Scholar 

  109. Zhou Z.Y., Pinson D., Zou R.P., Yu A.B., Discrete particle simulation of gas fluidization of ellipsoidal particles. Chemical Engineering Science, 2011, 66(23): 6128–6145. DOI: https://doi.org/10.1016/j.ces.2011.08.041

    Article  Google Scholar 

  110. Gan J.Q., Zhou Z.Y., Yu A.B., Micromechanical analysis of flow behaviour of fine ellipsoids in gas fluidization. Chemical Engineering Science, 2017, 163: 11–26. DOI: https://doi.org/10.1016/j.ces.2017.01.020

    Article  Google Scholar 

  111. Kildashti K., Dong K., Samali B., Zheng Q., Yu A., Evaluation of contact force models for discrete modelling of ellipsoidal particles. Chemical Engineering Science, 2018, 177: 1–17. DOI: https://doi.org/10.1016/j.ces.2017.11.004

    Article  Google Scholar 

  112. Vollmari K., Jasevičius R., Kruggel-Emden H., Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology, 2016, 291: 506–521. DOI: https://doi.org/10.1016/j.powtec.2015.11.045

    Article  Google Scholar 

  113. Vollmari K., Oschmann T., Kruggel-Emden H., Mixing quality in mono- and bidisperse systems under the influence of particle shape: A numerical and experimental study. Powder Technology, 2017, 308: 101–113. DOI: https://doi.org/10.1016/j.powtec.2016.11.072

    Article  Google Scholar 

  114. Mahajan V. V., Padding J.T., Nijssen T.M.J., Buist K.A., Kuipers J.A.M., Nonspherical particles in a pseudo-2D fluidized bed: Experimental study. AIChE Journal, 2018, 64(5): 1573–1590. DOI: https://doi.org/10.1002/aic.16078

    Article  Google Scholar 

  115. Ren B., Zhong W., Chen Y., Chen X., Jin B., Yuan Z., Lu Y., CFD-DEM simulation of spouting of corn-shaped particles. Particuology, 2012, 10(5): 562–572. DOI: https://doi.org/10.1016/j.partic.2012.03.011

    Article  Google Scholar 

  116. Ma H., Zhao Y., CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed. Powder Technology, 2018, 336: 533–545. DOI: https://doi.org/10.1016/j.powtec.2018.06.034

    Article  Google Scholar 

  117. Zhong W.Q., Zhang Y., Jin B., Zhang M., Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed. Chemical Engineering and Technology, 2009, 32(3): 386–391. DOI: https://doi.org/10.1002/ceat.200800516

    Article  Google Scholar 

  118. Ren B., Zhong W., Jin B., Shao Y., Yuan Z., Numerical simulation on the mixing behavior of corn-shaped particles in a spouted bed. Powder Technology, 2013, 234: 58–66. DOI: https://doi.org/10.1016/j.powtec.2012.09.024

    Article  Google Scholar 

  119. Ren B., Zhong W., Jiang X., Jin B., Yuan Z., Numerical simulation of spouting of cylindroid particles in a spouted bed. Canadian Journal of Chemical Engineering, 2014, 92(5): 928–934. DOI: https://doi.org/10.1002/cjce.21900

    Article  Google Scholar 

  120. Gan J.Q., Zhou Z.Y., Yu A.B., Interparticle force analysis on the packing of fine ellipsoids. Powder Technology, 2017, 320: 610–624. DOI: https://doi.org/10.1016/j.powtec.2017.07.064

    Article  Google Scholar 

  121. Vollmari K., Oschmann T., Wirtz S., Kruggel-Emden H., Pressure drop investigations in packings of arbitrary shaped particles. Powder Technology, 2015, 271: 109–124. DOI: https://doi.org/10.1016/j.powtec.2014.11.001

    Article  Google Scholar 

  122. Oschmann T., Vollmari K., Kruggel-Emden H., Wirtz S., Numerical investigation of the mixing of non-spherical particles in fluidized beds and during pneumatic conveying. Procedia Engineering, 2015, 102: 976–985. DOI: https://doi.org/10.1016/j.proeng.2015.01.220

    Article  Google Scholar 

  123. Patil A.V., Peters E.A.J.F., Kolkman T., Kuipers J.A.M., Modeling bubble heat transfer in gas-solid fluidized beds using DEM. Chemical Engineering Science, 2014, 105: 121–131. DOI: https://doi.org/10.1016/j.ces.2013.11.001

    Article  Google Scholar 

  124. Sutkar V.S., Deen N.G., Patil A.V., Salikov V., Antonyuk S., Heinrich S., Kuipers J.A.M., CFD-DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection. Chemical Engineering Journal, 2016, 288: 185–197. DOI: https://doi.org/10.1016/j.cej.2015.11.044

    Article  Google Scholar 

  125. Li B., Ma M., Yu Y., Chen C., Zhou Z., Particle scale study on heat transfer of gas-solid spout fluidized bed with hot gas injection. Particulate Science and Technology, 2019, 37(7): 777–786. DOI: https://doi.org/10.1080/02726351.2018.1438547

    Article  Google Scholar 

  126. Wang S., Luo K., Hu C., Fan J., Particle-scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed. Industrial and Engineering Chemistry Research, 2018, 57(19): 6774–6789. DOI: https://doi.org/10.1021/acs.iecr.8b00353

    Article  Google Scholar 

  127. Wang S., Luo K., Hu C., Lin J., Fan J., CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application. Chemical Engineering Science, 2019, 197: 280–295. DOI: https://doi.org/10.1016/j.ces.2018.12.031

    Article  Google Scholar 

  128. Patil A.V., Peters E.A.J.F., Sutkar V.S., Deen N.G., Kuipers J.A.M., A study of heat transfer in fluidized beds using an integrated DIA/PIV/IR technique. Chemical Engineering Journal, 2015, 259: 90–106. DOI: https://doi.org/10.1016/j.cej.2014.07.107

    Article  Google Scholar 

  129. Zhao Y., Jiang M., Liu Y., Zheng J., Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube. AIChE Journal, 2009, 55(12): 3109–3124. DOI: https://doi.org/10.1002/aic.11956

    Article  Google Scholar 

  130. Di Maio F.P., Di Renzo A., Trevisan D., Comparison of heat transfer models in DEM-CFD simulations of fluidized beds with an immersed probe. Powder Technology, 2009, 193(3): 257–265. DOI: https://doi.org/10.1016/j.powtec.2009.03.002

    Article  Google Scholar 

  131. Wahyudi H., Chu K., Yu A., 3D particle-scale modeling of gas-solids flow and heat transfer in fluidized beds with an immersed tube. International Journal of Heat and Mass Transfer, 2016, 97: 521–537. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.038

    Article  Google Scholar 

  132. Hou Q.F., Zhou Z.Y., Yu A.B., Gas-solid flow and heat transfer in fluidized beds with tubes: Effects of material properties and tube array settings. Powder Technology, 2016, 296: 59–71. DOI: https://doi.org/10.1016/j.powtec.2015.03.028

    Article  Google Scholar 

  133. Bellan S., Matsubara K., Cho H.S., Gokon N., Kodama T., A CFD-DEM study of hydrodynamics with heat transfer in a gas-solid fluidized bed reactor for solar thermal applications. International Journal of Heat and Mass Transfer, 2018, 116: 377–392. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.015

    Article  Google Scholar 

  134. Bellan S., Kodama T., Matsubara K., Gokon N., Cho H.S., Inoue K., Thermal performance of a 30 kW fluidized bed reactor for solar gasification: A CFD-DEM study. Chemical Engineering Journal, 2019, 360: 1287–1300. DOI: https://doi.org/10.1016/j.cej.2018.10.111

    Article  Google Scholar 

  135. Zhang K., Wang S., Li B., He Y., Zhao Y., Heat transfer in a pulsed fluidized bed by using coupled CFD-DEM method. Powder Technology, 2020, 367: 497–505. DOI: https://doi.org/10.1016/j.powtec.2020.04.013

    Article  Google Scholar 

  136. Li H.W., Wang L., Wang T., Du C.H., Experimental and CFD-DEM numerical evaluation of flow and heat transfer characteristics in mixed pulsed fluidized beds. Advanced Powder Technology, 2020, 31(8): 3144–3157. DOI: https://doi.org/10.1016/j.apt.2020.06.004

    Article  Google Scholar 

  137. Liang X., Liu X.J., Xia D., Numerical investigation of the gas-solid heat transfer characteristics of packed multi-size particles. International Journal of Heat and Mass Transfer, 2020, 149: 119237. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119237

    Article  Google Scholar 

  138. Gan J., Zhou Z., Yu A., Particle scale study of heat transfer in packed and fluidized beds of ellipsoidal particles. Chemical Engineering Science, 2016, 144: 201–215. DOI: https://doi.org/10.1016/j.ces.2016.01.041

    Article  Google Scholar 

  139. Wei G., Zhang H., An X., Jiang S., Influence of particle shape on microstructure and heat transfer characteristics in blast furnace raceway with CFD-DEM approach. Powder Technology, 2020, 361: 283–296. DOI: https://doi.org/10.1016/j.powtec.2019.08.021

    Article  Google Scholar 

  140. Wei G., Zhang H., An X., E.D., Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway. International Journal of Heat and Mass Transfer, 2020, 153: 119577. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119577

    Article  Google Scholar 

  141. Liu D., Chen X., Zhou W., Zhao C., Simulation of char and propane combustion in a fluidized bed by extending DEM-CFD approach. Proceedings of the Combustion Institute, 2011, 33(2): 2701–2708. DOI: https://doi.org/10.1016/j.proci.2010.06.070

    Article  Google Scholar 

  142. Hu C., Luo K., Wang S., Sun L., Fan J., Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 2019, 195: 693–706. DOI: https://doi.org/10.1016/j.ces.2018.10.015

    Article  Google Scholar 

  143. Yang S., Wang H., Wei Y., Hu J., Chew J.W., Numerical investigation of bubble dynamics during biomass gasification in a bubbling fluidized bed. ACS Sustainable Chemistry and Engineering, 2019, 7(14): 12288–12303. DOI: https://doi.org/10.1021/acssuschemeng.9b01628

    Google Scholar 

  144. Kim H., Arastoopour H., Extension of kinetic theory to cohesive particle flow. Powder Technology, 2002, 122(1): 83–94. DOI: https://doi.org/10.1016/S0032-5910(01)00395-3

    Article  Google Scholar 

  145. Tartan M., Gidaspow D., Measurement of granular temperature and stresses in risers. AIChE Journal, 2004, 50(8): 1760–1775. DOI: https://doi.org/10.1002/aic.10192

    Article  Google Scholar 

  146. Jung J., Gidaspow D., Gamwo I.K., Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds. Industrial and Engineering Chemistry Research, 2005, 44(5): 1329–1341. DOI: https://doi.org/10.1021/ie0496838

    Article  Google Scholar 

  147. Zhao Y., Lu B., Zhong Y., Euler-Euler modeling of a gas-solid bubbling fluidized bed with kinetic theory of rough particles. Chemical Engineering Science, 2013, 104: 767–779. DOI: https://doi.org/10.1016/j.ces.2013.10.001

    Article  Google Scholar 

  148. Liu X., Jiang Y., Liu C., Wang W., Li J., Hydrodynamic modeling of gas-solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory. Industrial and Engineering Chemistry Research, 2014, 53(7): 2800–2810. DOI: https://doi.org/10.1021/ie4029335

    Article  Google Scholar 

  149. Wang X., Li Y., Zhu T., Jing P., Wang J., Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model. Chemical Engineering Journal, 2015, 264: 479–486. DOI: https://doi.org/10.1016/j.cej.2014.11.038

    Article  Google Scholar 

  150. Zhou Q., Wang J., Li J., Three-dimensional simulation of dense suspension upflow regime in high-density CFB risers with EMMS-based two-fluid model. Chemical Engineering Science, 2014, 107: 206–217. DOI: https://doi.org/10.1016/j.ces.2013.12.020

    Article  Google Scholar 

  151. Bokkers G.A., Van Sint Annaland M., Kuipers J.A.M., Mixing and segregation in a bidisperse gas-solid fluidised bed: A numerical and experimental study. Powder Technology, 2004, 140(3): 176–186. DOI: https://doi.org/10.1016/j.powtec.2004.01.018

    Article  Google Scholar 

  152. McKeen T., Pugsley T., Simulation and experimental validation of a freely bubbling bed of FCC catalyst. Powder Technology, 2003, 129(1–3): 139–152. DOI: https://doi.org/10.1016/S0032-5910(02)00294-2

    Article  Google Scholar 

  153. Wang X., Jiang F., Lei J., Wang J., Wang S., Xu X., Xiao Y., A revised drag force model and the application for the gas-solid flow in the high-density circulating fluidized bed. Applied Thermal Engineering, 2011, 31(14–15): 2254–2261. DOI: https://doi.org/10.1016/j.applthermaleng.2011.03.019

    Article  Google Scholar 

  154. Shah M.T., Utikar R.P., Tade M.O., Pareek V.K., Evans G.M., Simulation of gas-solid flows in riser using energy minimization multiscale model: Effect of cluster diameter correlation. Chemical Engineering Science, 2011, 66(14): 3291–3300. DOI: https://doi.org/10.1016/j.ces.2011.01.056

    Article  Google Scholar 

  155. Wang S., Zhao G.B., Liu G.D., Lu H.L., Zhao F.X., Zhang T.Y., Hydrodynamics of gas-solid risers using cluster structure-dependent drag model. Powder Technology, 2014, 254: 214–227. DOI: https://doi.org/10.1016/j.powtec.2013.12.036

    Article  Google Scholar 

  156. Wang S., Liu G.D., Lu H.L., Xu P.F., Yang Y.C., Gidaspow D., A cluster structure-dependent drag coefficient model applied to risers. Powder Technology, 2012, 225: 176–189. DOI: https://doi.org/10.1016/j.powtec.2012.04.006

    Article  Google Scholar 

  157. Shi Z., Wang W., Li J., A bubble-based EMMS model for gas-solid bubbling fluidization. Chemical Engineering Science, 2011, 66(22): 5541–5555. DOI: https://doi.org/10.1016/j.ces.2011.07.020

    Article  Google Scholar 

  158. Lungu M., Zhou Y., Wang J., Yang Y., A CFD study of a bi-disperse gas-solid fluidized bed: Effect of the EMMS sub grid drag correction. Powder Technology, 2015, 280: 154–172. DOI: https://doi.org/10.1016/j.powtec.2015.04.032

    Article  ADS  Google Scholar 

  159. Qin Z., Zhou Q., Wang J., An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers. Chemical Engineering Science, 2019, 207: 358–378. DOI: https://doi.org/10.1016/j.ces.2019.06.037

    Article  Google Scholar 

  160. Zhang N., Lu B., Wang W., Li J., 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chemical Engineering Journal, 2010, 162(2): 821–828. DOI: https://doi.org/10.1016/j.cej.2010.06.033

    Article  Google Scholar 

  161. Lu B., Zhang N., Wang W., Li J., Chiu J.H., Kang S.G., 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler. AIChE Journal, 2013, 59(4): 1108–1117. DOI: https://doi.org/10.1002/aic.13917

    Article  Google Scholar 

  162. Lu B., Zhang J., Luo H., Wang W., Li H., Ye M., Liu Z., Li J., Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors. Chemical Engineering Science, 2017, 171: 244–255. DOI: https://doi.org/10.1016/j.ces.2017.05.007

    Article  Google Scholar 

  163. Dong N.H., Armstrong L.M., Gu S., Luo K.H., Effect of tube shape on the hydrodynamics and tube-to-bed heat transfer in fluidized beds. Applied Thermal Engineering, 2013, 60(1–2): 472–479. DOI: https://doi.org/10.1016/j.applthermaleng.2012.08.018

    Article  Google Scholar 

  164. Yusuf R., Halvorsen B., Melaaen M.C., Eulerian-Eulerian simulation of heat transfer between a gas-solid fluidized bed and an immersed tube-bank with horizontal tubes. Chemical Engineering Science, 2011, 66(8): 1550–1564. DOI: https://doi.org/10.1016/j.ces.2010.12.015

    Article  Google Scholar 

  165. Chang J., Wang G., Gao J., Zhang K., Chen H., Yang Y., CFD modeling of particle-particle heat transfer in dense gas-solid fluidized beds of binary mixture. Powder Technology, 2012, 217: 50–60. DOI: https://doi.org/10.1016/j.powtec.2011.10.008

    Article  Google Scholar 

  166. Lungu M., Wang J., Yang Y., Numerical simulations of flow structure and heat transfer in a central jet bubbling fluidized bed. Powder Technology, 2015, 269: 139–152. DOI: https://doi.org/10.1016/j.powtec.2014.08.067

    Article  Google Scholar 

  167. Wang L., Sun J., Numerical simulation of radiation heat transfer characteristics in a cylindrical fluidized bed. Heat and Mass Transfer, 2020, 56(7): 2025–2034. DOI: https://doi.org/10.1007/s00231-020-02822-z

    Article  ADS  Google Scholar 

  168. Wang S.Y., Liu G.D., Wu Y.B., Chen J.H., Liu Y.J., Wei L.X., Numerical investigation of gas-to-particle cluster convective heat transfer in circulating fluidized beds. International Journal of Heat and Mass Transfer, 2010, 53(15–16): 3102–3110. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.017

    MATH  Google Scholar 

  169. Wang L., Wei G., Jiang J., Duan S., Xu L., Yuan W., Hou Q., Experimental and numerical investigation of particle flow and mixing characteristics in an internally circulating fluidized bed. Journal of Chemical Engineering of Japan, 2019, 52(1): 89–98. DOI: https://doi.org/10.1252/jcej.18we014

    Article  Google Scholar 

  170. Liu X., Zhang H., Hong H., Reduction kinetics of Fe-based oxygen carriers using syngas in a honeycomb fixed-bed reactor for chemical-looping combustion. Journal of Thermal Science, 2020, 29(1): 13–24. DOI: https://doi.org/10.1007/s11630-020-1255-9

    Article  ADS  Google Scholar 

  171. Kruggel-Emden H., Rickelt S., Stepanek F., Munjiza A., Development and testing of an interconnected multiphase CFD-model for chemical looping combustion. Chemical Engineering Science, 2010, 65(16): 4732–4745. DOI: https://doi.org/10.1016/j.ces.2010.05.022

    Article  Google Scholar 

  172. Mahalatkar K., Kuhlman J., Huckaby E.D., O’Brien T., CFD simulation of a chemical-looping fuel reactor utilizing solid fuel. Chemical Engineering Science, 2011, 66(16): 3617–3627. DOI: https://doi.org/10.1016/j.ces.2011.04.025

    Article  Google Scholar 

  173. Mahalatkar K., Kuhlman J., Huckaby E.D., O’Brien T., Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels. Chemical Engineering Science, 2011, 66(3): 469–479. DOI: https://doi.org/10.1016/j.ces.2010.11.003

    Article  Google Scholar 

  174. Deng Z., Xiao R., Jin B., Song Q., Huang H., Multiphase CFD modeling for a chemical looping combustion process (fuel reactor). Chemical Engineering and Technology, 2008, 31(12): 1754–1766. DOI: https://doi.org/10.1002/ceat.200800341

    Article  Google Scholar 

  175. Gerber S., Behrendt F., Oevermann M., An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material. Fuel, 2010, 89(10): 2903–2917. DOI: https://doi.org/10.1016/j.fuel.2010.03.034

    Article  Google Scholar 

  176. Deng Z., Xiao R., Jin B., Huang H., Shen L., Song Q., Li Q., Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed. Energy and Fuels, 2008, 22(3): 1560–1569. DOI: https://doi.org/10.1021/ef7007437

    Article  Google Scholar 

  177. Iggland M., Leion H., Mattisson T., Lyngfelt A., Effect of fuel particle size on reaction rate in chemical looping combustion. Chemical Engineering Science, 2010, 65(22): 5841–5851. DOI: https://doi.org/10.1016/j.ces.2010.08.001

    Article  Google Scholar 

  178. Sun J., Yan Y., Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: A review. Measurement Science and Technology, 2016, 27(11): 112001. DOI: https://doi.org/10.1088/0957-0233/27/11/112001

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the National Natural Science Foundation of China (U20A20304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ren, A., Tang, T. et al. Multi-Scale Numerical Simulation of Flow, Heat and Mass Transfer Behaviors in Dense Gas-Solid Flows: A Brief Review. J. Therm. Sci. 31, 607–633 (2022). https://doi.org/10.1007/s11630-022-1605-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1605-x

Keywords

Navigation