Skip to main content

Advertisement

Log in

Review on Applications of Zeotropic Mixtures

  • Invited Review
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Compared with the pure fluids, the zeotropic mixtures can balance the requirements of environmental protection, heat source matching and system safety, and exhibit excellent thermodynamic performance. However, compared to the widespread applications of pure fluids, zeotropic mixtures are rarely exploited in thermodynamic cycles, and there is a lack of targeted summary on refrigeration systems, organic Rankine cycle systems and combined power and refrigeration systems. In the recent years, zeotropic mixtures are developing at an unprecedented pace, while the working fluids components are inevitably explored in the process. In this paper, the research progress of zeotropic mixtures in the field of refrigeration systems, organic Rankine cycle systems and combined power and refrigeration systems are reviewed. Based on the review of zeotropic working mixtures, the reasonable predictions can be proposed. In the future, environmental problems will still be one of the most important concerned issues. Therefore, the zeotropic mixtures consisting of natural hydrocarbons and carbon dioxide, which are environmentally friendly, have great potential for development. Furthermore, zeotropic mixtures of natural working fluids can improve comprehensive energy efficiency of combined systems and will play an important role in future carbon emission reduction technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou Y., Du X., Yang L., Yang Y., Heat transfer characteristics of zeotropic mixtures in an orc evaporator heated by exhaust gas. Proceedings of the Csee, 2013, 33(8): 9–15.

    Google Scholar 

  2. Manolakos D., Papadakis G., Kyritsis S., Bouzianas K., Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination. 2007, 203(1–3): 366–374.

  3. Drescher U., Brüggemann D., Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Applied Thermal Engineering, 2007, 27(1): 223–228.

    Article  Google Scholar 

  4. Yari M., Exergetic analysis of various types of geothermal power plants. Renewable Energy, 2010, 35(1): 112–121.

    Article  Google Scholar 

  5. Moore F.P., Martin L.L., A nonlinear nonconvex minimum total heat transfer area formulation for ocean thermal energy conversion (OTEC) systems. Applied Thermal Engineering, 2008, 28(8–9): 1015–1021.

    Article  Google Scholar 

  6. Angelino G., Colonna P., Organic Rankine cycles (ORCs) for energy recovery from molten carbonate fuel cells. 35th Intersociety Energy Conversion Engineering Conference and Exhibit, 2000, 1: 1400–1409.

  7. Hung T.C., Shai T., Wang S.K., A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 1997, 22(7): 661–667.

    Article  Google Scholar 

  8. Wang J., Zhao L., Wang X., A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle. Applied Energy, 2010, 87(11): 3366–3373.

    Article  Google Scholar 

  9. Nguyen V.M., Doherty P.S., Riffat S.B., Development of a prototype low-temperature Rankine cycle electricity generation system. Applied Thermal Engineering, 2001, 21(2): 169–181.

    Article  Google Scholar 

  10. Mago P.J., Chamra L.M., Srinivasan K., Somayaji C., An examination of regenerative organic Rankine cycles using dry fluids. Applied Thermal Engineering, 2008, 28(8–9): 998–1007.

    Article  Google Scholar 

  11. Podbielniak W.J., Art of refrigeration.1936.

  12. Kleemenko A.P., One flow cascade cycle. 10th International Congress of Refrigeration, Pergamon Press, Copenhagen, Denmark, 1959.

    Google Scholar 

  13. Xu X.W., Study on concentration change and performance optimization of non-azeotropic mixed working substant refrigeration system, Ph. D. thesis, South China University of Technology, China, 2012. (in Chinese)

    Google Scholar 

  14. Fuderer A., Compression process for refrigeration.1965.

  15. Brodyanskii V.M., Gromov É.A., Grezin A.K., Yagodin V.M., Nikol’skii V.A., Tashchina A.G., Efficient throttling cryogenic refrigerators which operate on mixtures. Chemical & Petroleum Engineering, 1971, 7(12): 1057–1061.

    Article  Google Scholar 

  16. Missimer D., Self-balancing low temperature refrigeration system. US Patent 3768275, 1973.

  17. Little W.A., Design and construction of microminiature cryogenic refrigerators. Aip Conference Proceedings, 1978, 44(1978): 421–424.

    Article  ADS  Google Scholar 

  18. Bao J., Zhao L., A review of working fluid and expander selections for organic Rankine cycle. Renewable & Sustainable Energy Reviews, 2013, 24: 325–342.

    Article  Google Scholar 

  19. Geng H., Cui X.Y., She H.L., Research progress of mixed-refrigerants used in cryogenic throttling refrigeration systems. Journal of Chemical Engineering of Chinese Universities, 2019, 33(1): 21–32. (in Chinese)

    Google Scholar 

  20. Alfeev V.N., Amplification properties of superconductor-semiconductor contacts. Radiotekhnika I Elektronika, 1977, 22(11): 2376–2382.

    ADS  Google Scholar 

  21. Gong M.Q., Luo E.C., Wu J.F., Zhou Y., On the temperature distribution in the counter flow heat exchanger with multicomponent non-azeotropic mixtures. Cryogenics, 2002, 42(12): 795–804.

    Article  ADS  Google Scholar 

  22. Mayta B.Z., Hampson’s type cryocoolers with distributed Joule-Thomson effect for mixed refrigerants closed cycle. Cryogenics, 2014, 61: 92–96.

    Article  ADS  Google Scholar 

  23. Keppler F., Nellis G., Klein S.A., Optimization of the composition of a gas mixture in a Joule-Thomson cycle. HVAC&R Research, 2004, 10(2): 213–230.

    Article  Google Scholar 

  24. Tzabar N., Binary mixed-refrigerants for steady cooling temperatures between 80 K and 150 K with Joule-Thomson cryocoolers. Cryogenics, 2014, 64: 70–76.

    Article  ADS  Google Scholar 

  25. Luo E.C., Zhou Y., Experimental study on low working pressure mixtures throttling refrigerators. Vacuum and Cryogenics, 1995, 01(4): 215–218. (in Chinese)

    Google Scholar 

  26. Baek S., Jeong S., Hwang G., Pressure drop characteristics of cryogenic mixed refrigerant at macro and micro channel heat exchangers. Cryogenics, 2012, 52(12): 689–694.

    Article  ADS  Google Scholar 

  27. Tan Y., Chen Y., Wang L., Thermodynamic analysis of a mixed refrigerant ejector refrigeration cycle operating with two vapor-liquid separators. Journal of Thermal Science, 2018, 27(03): 38–48.

    Article  Google Scholar 

  28. Missimer D.J., Control system for low temperature refrigeration system. US Patent 3698202, 1972.

  29. Kim S.G., Kim M.S., Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant. 2002, 25(8): 1093–1101.

  30. Kondou C., Mishima F., Koyama S., Condensation and evaporation of low gwp refrigerant mixture r32/r1234ze(e) in horizontal microfin tubes. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2013, 30(4): 401–411.

    Google Scholar 

  31. Somasundaram P., Dinakaran R., Iniyan S., Samuel A.A., Exergy based refrigerant selection and simulation of auto refrigeration cascade (ARC) system. International Journal of Exergy, 2004, 1(1): 60–81.

    Article  Google Scholar 

  32. Li Z., Shen B., Gluesenkamp K.R., Multi-objective optimization of low-gwp mixture composition and heat exchanger circuitry configuration for improved system performance and reduced refrigerant flammability. International Journal of Refrigeration, 2021, 126: 133–142.

    Article  Google Scholar 

  33. Tashtoush B., Tahat M., Shudeifat M.A., Experimental study of new refrigerant mixtures to replace R12 in domestic refrigerators. Applied Thermal Engineering, 2002, 22(5): 495–506.

    Article  Google Scholar 

  34. Sekhar S.J., Lal D.M., Renganarayanan S., Improved energy efficiency for CFC domestic refrigerators retrofitted with ozone-friendly HFC134a/HC refrigerant mixture. International Journal of Thermal Sciences, 2004, 43(3): 307–314.

    Article  Google Scholar 

  35. Aprea C., Renno C., Experimental comparison of R22 with R417A performance in a vapour compression refrigeration plant subjected to a cold store. Energy Conversion and Management, 2004, 45(11–12): 1807–1819.

    Article  Google Scholar 

  36. Ravikumar T.S., Lal D.M., On-road performance analysis of R134a/R600a/R290 refrigerant mixture in an automobile air-conditioning system with mineral oil as lubricant. Energy Conversion & Management, 2009, 50(8): 1891–1901.

    Article  Google Scholar 

  37. Jabaraj D.B., Avinash P., Lal D.M., Renganarayan S., Experimental investigation of HFC407C/HC290/HC600a mixture in a window air conditioner. Energy Conversion & Management, 2006, 47(15/16): 2578–2590.

    Article  Google Scholar 

  38. Sobieraj M., Experimental investigation of the effect of a recuperative heat exchanger and throttles opening on a co2/isobutane autocascade refrigeration system. Energies, 2020, 13(20): 5285.

    Article  Google Scholar 

  39. Silva R.J.B.M.D., Salavera D., Coronas A., Modelling of CO2/acetone fluid mixture thermodynamic properties for compression/resorption refrigeration systems. IOP Conference Series Materials Science and Engineering, 2019, 595: 012030.

    Article  Google Scholar 

  40. Yelishala S.C., Kannaiyan K., Sadr R., Wang Z., Levendis Y.A., Metghalchi H., Performance maximization by temperature glide matching in energy exchangers of cooling systems operating with natural hydrocarbon/CO2 refrigerants. International Journal of Refrigeration, 2020, 119: 294–304.

    Article  Google Scholar 

  41. Doiphode P., Lakshmanan V., Samanta I., Experimental and numerical study of cooling performance of air conditioner using R32/CO2 refrigerant mixture. International Journal of Air-Conditioning and Refrigeration, 2019, 27(02): 286–292.

    Article  Google Scholar 

  42. Wang D., Chen Z., Gu Z., Liu Y., Kou Z., Tao L., Performance analysis and comprehensive comparison between CO2 and CO2/ethane azeotropy mixture as a refrigerant used in single-stage and two-stage vapor compression transcritical cycles. International Journal of Refrigeration, 2020, 115: 39–47.

    Article  Google Scholar 

  43. Yu B., Wang D., Liu C., Jiang F., Shi J., Chen J., Performance improvements evaluation of an automobile air conditioning system using CO2-propane mixture as a refrigerant. International Journal of Refrigeration, 2018, 88: 172–181.

    Article  Google Scholar 

  44. Elakhdar M., Tashtoush B.M., Nehdi E., Kairouani L., Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle. Energy, 2018, 163: 1217–1230.

    Article  Google Scholar 

  45. Natarajan V., Global warming impact and performance enhancement of propane/isobutane mixtures as alternative in air conditioning systems. 3rd IEEE International Conference on Science Technology Engineering & Management, Chennai, INDIA, 2017: 1111–1116.

  46. Sobieraj M., Rosiński M., High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration. Applied Thermal Engineering, 2019, 161: 114149.

    Article  Google Scholar 

  47. Shen A., Guan K., Yang X., Jin S., Yang L., Theoretical analysis of a novel liquid-vapor separation condensation ejector refrigeration cycle with zeotropic mixtures. Energy Conversion and Management, 2020, 223(1): 113322.

    Article  Google Scholar 

  48. Dai B., Liu S., Li H., Sun Z., Song M., Yang Q., Ma Y., Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant. Energy, 2018: S0360544218303451.

  49. Bai T., Li D., Xie H., Yan G., Yu J., Experimental research on a Joule-Thomson refrigeration cycle with mixture R170/R290 for 60°C low-temperature freezer. Applied Thermal Engineering, 2020, 186(2): 116476.

    Google Scholar 

  50. Liu Y., Yu J., Performance evaluation of an ejector subcooling refrigeration cycle with zeotropic mixture R290/R170 for low-temperature freezer applications. Applied Thermal Engineering, 2019, 161: 114128.

    Article  Google Scholar 

  51. Yu M., Yu J., Thermodynamic analyses of a flash separation ejector refrigeration cycle with zeotropic mixture for cooling applications. Energy Conversion and Management, 2021, 229(2): 113755.

    Article  Google Scholar 

  52. Dalakov P., Aleksandra K., Rozhentsev A., Bohn M., 2H-Ne-He as the working fluid components in cryogenic systems. 2020, 23(2): 61–68.

  53. Sun J., Dong X.B., Ge Z.H., Yang Y.P., Study on cycle performance of non-azeotropic mixed working fluid in high temperature heat pump for heat recovery. Journal of Engineering Thermophysics, 2019, 40(9): 1949–1957. (in Chinese)

    Google Scholar 

  54. Lee Y.S., Su C.C., Experimental studies of isobutane (R600a) as the refrigerant in domestic refrigeration system. Applied Thermal Engineering, 2002, 22(5): 507–519.

    Article  ADS  Google Scholar 

  55. Mohammad M., Mahmoud A.M., Lee J., An assessment of some predictive methods for in-tube condensation heat transfer of refrigerant mixtures. Ashrae Transactions, 2013, 119(2): 38–51.

    Google Scholar 

  56. Jakobs R., Kruse H., The use of non-azeotropic refrigerant mixtures in heat pumps for energy saving. International Journal of Refrigeration, 1979, 2(1): 29–32.

    Article  Google Scholar 

  57. Kruse H., The advantages non-azeotropic refrigerant mixtures for heat pump application. International Journal of Refrigeration, 1981, 4(3): 119–125.

    Article  Google Scholar 

  58. Pannock J., Didion D., Radermacher R., Performance evaluation of chlorine free zeotropic refrigerant mixtures in heat pumps-computer study and tests, in: International Refrigeration And Air Conditioning Conference, Purdue University, US, 1992: 25–34.

  59. Chang Y.S., Kim M.S., Ro S.T., Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. International Journal of Refrigeration, 2000, 23(3): 232–242.

    Article  Google Scholar 

  60. Kim M., Kim M.S., Kim Y., Experimental study on the performance of a heat pump system with refrigerant mixtures’ composition change. Energy, 2004, 29(7): 1053–1068.

    Article  Google Scholar 

  61. Liu L.H., Zhang L.N., Chen G.M., Capacity modulation device with changing concentration of mixture refrigerant: A state-of-the-art review. Journal of Refrigeration, 2007, 28(6): 35–40. (in Chinese)

    Google Scholar 

  62. Zhao L., Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system. Energy Conversion & Management, 2004, 45(9/10): 1369–1378.

    Article  Google Scholar 

  63. Pan G., Li Z., Investigation on incomplete condensation of non-azeotropic working fluids in high temperature heat pumps. Energy Conversion and Management, 2006, 47(13–14): 1884–1893.

    Article  Google Scholar 

  64. Liu D., Chen G., Experimental study on variable capacity heat pump system with ternary mixed working medium. Journal of Refrigeration, 2009, 30(04): 25–30. (in Chinese)

    Google Scholar 

  65. Liu J.P., Xu X.W., Zhang Z.P., Xiong R.X., Liu X.F., Experimental study on zeotropic mixture auto -cascade heat pump. Cryogenics & Superconductivity, 2006, 34(6): 408–413. (in Chinese)

    Google Scholar 

  66. Du K., Xu W.R., Concentration optimization of r134a/r123 in auto-cascade heat pump systems. Journal of Refrigeration, 2009, 30(2): 33–38. (in Chinese)

    Google Scholar 

  67. Mezentseva N.N., Mezentsev I., Investigation of heat pump efficiency on zeotropic refrigerants R32/R134a and R32/R152a. Journal of Engineering Thermophysics, 2018, 27(4): 554–559.

    Article  Google Scholar 

  68. Zhu Y., Li W., Sun G., Thermodynamic analysis of evaporation temperature glide of zeotropic mixtures on the ORC-CCHP system integrated with ejector and heat pump. Energy Procedia, 2019, 158: 1632–1639.

    Article  Google Scholar 

  69. Magallanes J.A.H., Avila S., Pasarán A., Morales L.I., Rivera W., Thermodynamic simulation of an absorption heat pump-transformer-power cycle operating with the ammonia-water mixture. Applied Thermal Engineering, 2021, 182(1): 1–15.

    Google Scholar 

  70. Zühlsdorf B., Meesenburg W., Ommen T.S., Thorsen J.E., Markussen W.B., Elmegaard B., Improving the performance of booster heat pumps using zeotropic mixtures. Energy, 2018, 154: 390–402.

    Article  Google Scholar 

  71. Guo H., Gong M., Qin X., Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump. Applied Energy, 2019, 237: 338–352.

    Article  Google Scholar 

  72. Cao Y., Parikhani T., Bahman A., Thermodynamic and thermoeconomic analyses of an ejector/booster enhanced heat pump system with zeotropic mixture. International Journal of Energy Research, 2021, 45(3): 4443–4465.

    Article  Google Scholar 

  73. Kravanja G., Zajc G., ŽeljkoKnez, MojcaŠkerget, SimonMarčič, H. Knez M., Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions. Energy, 2018, 152: 190–201.

    Article  Google Scholar 

  74. Xiao B., Chang H., He L., Zhao S., Shu S., Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a. Renewable Energy, 2020, 147: 2013–2023.

    Article  Google Scholar 

  75. Paradeshi L., Srinivas M., Jayaraj S., Performance of hydrocarbon mixture in a direct expansion solar assisted heat pump system. Heat & Mass Transfer, 2019, 55(4): 965–977.

    Article  ADS  Google Scholar 

  76. Tang X., Ju F., Fan X., Wang T., Ouyang H., Kuang A., Ma S., Feasibility analysis of R1234ze(E)/R41 mixture used as refrigerant in heat pump system. Journal of Zhongyuan University of Technology, 2018, 29(3): 71–74.

    Google Scholar 

  77. Ju F., Fan X., Chen Y., Wang T., Tang X., Kuang A., Ma S., Experimental investigation on a heat pump water heater using R744/R290 mixture for domestic hot water. International Journal of Thermal ences, 2018, 132: 1–13.

    Google Scholar 

  78. Wang F., Yuan Q., Wang S., Li Z., Wang P., Performance evaluation of heat pump system using non-azeotropic refrigerant blends R1234ze/HCs. Journal of Refrigeration, 2020, 41 (01): 29–34. (in Chinese)

    Google Scholar 

  79. Kyaw T., Kosei T., Nobuo T., Takahiko M., Yukihiro H., Performance evaluation of a heat pump system using an HFC32/HFO1234yf Blend with GWP below 150 for Heating Applications. Applied Thermal Engineering, 2020, 182: 115952.

    Google Scholar 

  80. Zuev O.A., Garanov S.A., Ivanova E.V., Karpukhin A.S., Investigation of the efficiency of autocascade and cascade heat pumps in cold climate. Chemical and Petroleum Engineering, 2020, 56(5–6): 448–455.

    Article  Google Scholar 

  81. Liu J., Lin Z., Thermodynamic analysis of a novel dual-temperature air-source heat pump combined ejector with zeotropic mixture R1270/R600a. Energy Conversion and Management, 2020, 220: 113078.

    Article  Google Scholar 

  82. Liu Q., Duan Y., Yang Z., Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids. Applied Energy, 2014, 115(4): 394–404.

    Article  Google Scholar 

  83. Quoilin S., Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications. The University of Liège (Belgium), Wallonia, Belgium, 2011.

    Google Scholar 

  84. Song J.Z., Study on integrated solar thermal utilization system of medium and low temperature based on organic Rankine cycle. Dongnan University, Hunan, China, 2016. (in Chinese)

    Google Scholar 

  85. Chys M., Broek M. Van. den., Vanslambrouck B., Paepe M.D., Potential of zeotropic mixtures as working fluids in organic Rankine cycles. Energy, 2012, 44(1): 623–632.

    Article  Google Scholar 

  86. Modi A., Haglind F., A review of recent research on the use of zeotropic mixtures in power generation systems. Energy Conversion and Management, 2017, 138: 603–626.

    Article  Google Scholar 

  87. Zhai H., An Q., Shi L., Zeotropic mixture active design method for organic Rankine cycle. Applied Thermal Engineering, 2018, 129: 1171–1180.

    Article  Google Scholar 

  88. Miao Z., Li Z., Zhang K., Xu J., Cheng Y., Selection criteria of zeotropic mixtures for subcritical organic Rankine cycle based on thermodynamic and thermo-economic analysis. Applied Thermal Engineering, 2020, 180: 115837.

    Article  Google Scholar 

  89. Cai J., Shu G., Tian H., Wang X., Wang R., Shi X., Validation and analysis of organic Rankine cycle dynamic model using zeotropic mixture. Energy, 2020, 197: 117003.

    Article  Google Scholar 

  90. Andreasen J.G., Baldasso E., Kærn M.R., Weith T., Heberle F., Brüggemann D., Haglind F., Techno-economic feasibility analysis of zeotropic mixtures and pure fluids for organic Rankine cycle systems. Applied Thermal Engineering, 2021, 192: 116791.

    Article  Google Scholar 

  91. Zhu Y., Li W., Wang Y., Li H., Li S., Thermodynamic analysis and parametric optimization of ejector heat pump integrated with organic Rankine cycle combined cooling, heating and power system using zeotropic mixtures. Applied Thermal Engineering, 2021, 194: 117097.

    Article  Google Scholar 

  92. Ouyang T., Xu J., Su Z., Zhao Z., Huang G., Mo C., A novel design of low-grade waste heat utilization for coal-fired power plants with sulfuric acid recovery. Energy Conversion and Management, 2021, 227: 113640.

    Article  Google Scholar 

  93. Goswami D.Y., Vijayaraghavan S., Lu S., Tamm G., New and emerging developments in solar energy. Solar Energy, 2001, 76(1–3): 33–43.

    ADS  Google Scholar 

  94. Chen H., Goswami D.Y., Stefanakos E.K., A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Reviews, 2010, 14(9): 3059–3067.

    Article  Google Scholar 

  95. Liu B.T., Chien K.H., Wang C.C., Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004, 29(8): 1207–1217.

    Article  Google Scholar 

  96. Saleh B., Koglbauer G., Wendland M., Fischer J., Working fluids for low-temperature organic Rankine cycles. Energy, 2007, 32(7): 1210–1221.

    Article  Google Scholar 

  97. Zhao L., Wang X.D., Zhang Q., Theoretical study of non-azeotropic working medium for solar Rankine cycle at low temperature. Acta Energiae Solaris Sinica, 2009, 30(6): 738–743. (in Chinese)

    Google Scholar 

  98. Wang X.D., Zhao L., Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation. Solar Energy, 2009, 83(5): 605–613.

    Article  ADS  Google Scholar 

  99. Yaïci W., Entchev E., Talebizadehsardari P., Longo M., Thermodynamic, economic and sustainability analysis of solar organic rankine cycle system with zeotropic working fluid mixtures for micro-cogeneration in buildings. Applied Sciences, 2020, 10(21): 7925.

    Article  Google Scholar 

  100. Gu Y.T., Geng Z., Xie D., Wang P., Comprehensive evaluation of trough solar non-azeotropic mixed working medium system. Acta Energiae Solaris Sinica, 2018, 39(5): 1210–1219. (in Chinese)

    Google Scholar 

  101. Hung T.C., Wang S.K., Kuo C.H., Pei B.S., Tsai K.F., A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy, 2010, 35(3): 1403–1411.

    Article  Google Scholar 

  102. Wang L., Li Q., Meng A., Zhang Y., Research progress and application prospect of waste heat power generation technology with organic working fluid. Power & Energy, 2010, 31(1): 9–14. (in Chinese)

    Google Scholar 

  103. Hung T.C., Waste heat recovery of organic Rankine cycle using dry fluids. Energy Conversion and Management, 2001, 42(5): 539–553.

    Article  Google Scholar 

  104. Angelino G., Paliano P.C.D., Multicomponent working fluids for Organic Rankine Cycles (ORCs). Energy, 1998, 23(6): 449–463.

    Article  Google Scholar 

  105. Pang K., Chen S., Hung T., Feng Y., Yang S., Wong K., Lin J., Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy, 2017, 133: 636–651.

    Article  Google Scholar 

  106. Georgousopoulos S., Braimakis K., Grimekis D., Karellas S., Thermodynamic and techno-economic assessment of pure and zeotropic fluid ORCs for waste heat recovery in a biomass IGCC plant. Applied Thermal Engineering, 2021, 183: 116202.

    Article  Google Scholar 

  107. Wang L., Bu X., Li H., Investigation on geothermal binary-flashing cycle employing zeotropic mixtures as working fluids. Geothermal Energy, 2019, 7(1): 36.

    Article  Google Scholar 

  108. Aldrich M.J., Laughlin A.W., Gambill D.T., Geothermal resource base of the world: a revision of the Electric Power Research Institute’s estimate, Los Alamos Scientific Laboratory Report LA-8801-MS, University of California, Los Alamos, New Mexico, 1981.

    Book  Google Scholar 

  109. Pollet M., Gosselin L., Dallaire J., Potvin F.M., Optimization of geothermal power plant design for evolving operating conditions. Applied Thermal Engineering, 2018, 134: 118–129.

    Article  Google Scholar 

  110. Sadeghi M., Nemati A., ghavimi A., Yari M., Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy, 2016, 109: 791–802.

    Article  Google Scholar 

  111. Invernizzi C., Bombarda P., Thermodynamic performance of selected HCFS for geothermal applications. Energy, 2014, 22(9): 887–895.

    Article  Google Scholar 

  112. Hettiarachchi H.D.M., Golubovic M., Worek W.M., Ikegami Y., Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy, 2007, 32(9): 1698–1706.

    Article  Google Scholar 

  113. Guo T., Wang H.X., Zhang S.J., Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system. Energy Conversion & Management, 2011, 52(6): 2384–2391.

    Article  Google Scholar 

  114. Heberle F., Brüggemann D., Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Applied Thermal Engineering, 2010, 30(11–12): 1326–1332.

    Article  Google Scholar 

  115. Heberle F., Brüggemann D., Thermo-economic evaluation of organic Rankine cycles for geothermal power generation using zeotropic mixtures. Energies, 2015, 8(3): 2097–2124.

    Article  Google Scholar 

  116. Desideri U., Bidini G., Study of possible optimisation criteria for geothermal power plants. Energy Conversion & Management, 1997, 38(15/17): 1681–1691.

    Article  Google Scholar 

  117. Heberle F., Preißinger M., Brüggemann D., Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources. Renewable Energy, 2012, 37(1): 364–370.

    Article  Google Scholar 

  118. Kang Z., Zhu J., Lu X., Li T., Wu X., Parametric optimization and performance analysis of zeotropic mixtures for an organic Rankine cycle driven by low-medium temperature geothermal fluids. Applied Thermal Engineering, 2015, 89: 323–331.

    Article  Google Scholar 

  119. Liu Q., Shen A., Duan Y., Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids. Applied Energy, 2015, 148: 410–420.

    Article  Google Scholar 

  120. Chinese D., Meneghetti A., Nardin G., Diffused introduction of Organic Rankine Cycle for biomass — based power generation in an industrial district: a systems analysis. International Journal of Energy Research, 2010, 28(11): 1003–1021.

    Article  Google Scholar 

  121. Yang M.H., Yeh R.H., Analysis of optimization in an OTEC plant using organic Rankine cycle. Renewable Energy, 2014, 68: 25–34.

    Article  Google Scholar 

  122. Wu C., Wu B., Ye Y., Analysis of zeotropic mixtures used in OTEC Rankine cycle system. Renewable Energy Resources, 2015, 033(004): 632–636.

    Google Scholar 

  123. Li C., Pan L., Wang Y., Thermodynamic optimization of Rankine cycle using CO2-based binary zeotropic mixture for ocean thermal energy conversion. Applied Thermal Engineering, 2020, 178: 115617.

    Article  Google Scholar 

  124. GU Y., Chen L., Geng Z., Performance analysis of orc system for non-zeotropic mixtures under different solar energy sources. Power Generation Technology, 2018, 39: 177–186.

    Google Scholar 

  125. Vittorini D., Cipollone R., Carapellucci R., Enhanced heat exchanger layout for optimum energy performance in solar thermal ORC-based unit. 74th Conference of the Italian Thermal Machines Engineering Association, Modena, Italy, 2019, 2191: 020154.

  126. Mosaffaab A.H., Farshi L.G., Thermodynamic feasibility evaluation of an innovative salinity gradient solar ponds-based ORC using a zeotropic mixture as working fluid and LNG cold energy. Applied Thermal Engineering, 2020, 186: 116488.

    Article  Google Scholar 

  127. Yaïci W., Entchev E., Talebizadehsardari P., Longo M., Performance investigation of solar organic Rankine cycle system with zeotropic working fluid mixtures for use in micro-cogeneration. Journal of Energy Resources Technology, 2021, 143(9): 090905.

    Article  Google Scholar 

  128. Ge Z., Li J., Liu Q., Duan Y., Yang Z., Thermodynamic analysis of dual-loop organic Rankine cycle using zeotropic mixtures for internal combustion engine waste heat recovery. Energy Conversion and Management, 2018, 166: 201–214.

    Article  Google Scholar 

  129. Ren J., Cao Y., Long Y., Qiang X., Dai Y., Thermodynamic comparison of gas turbine and ORC combined cycle with pure and mixture working fluids. Journal of Energy Engineering, 2019, 145(1): 05018002.

    Article  Google Scholar 

  130. Shu G., Yu Z., Tian H., Liu P., Xu Z., Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine’s waste heat recovery. Energy Conversion and Management, 2018, 174(OCT.): 668–685.

    Article  Google Scholar 

  131. Lin J., Qin G., Yue H., Optimization of binary zeotropic mixture working fluids for an organic Rankine cycle for waste heat recovery between centrifugal compressor stages. Energy Science and Engineering, 2020, 8(5): 1746–1757.

    Article  Google Scholar 

  132. Tian H., Li L., Shu G., Yan N., Li X., Yu Z., Composition shift in zeotropic mixture-based organic Rankine cycle system for harvesting engine waste heat. International Journal of Energy Research, 2018, 42(14): 4345–4359.

    Article  Google Scholar 

  133. Wang M., Liu Q., Zhang B., Effects of condensation condition on cycle performance of the Organic Rankine Cycle (ORC) for recovering waste heat of engine using zeotropic mixtures. Chemical Industry and Engineering Progress, 2018, 37(8): 2927–2934. (in Chinese)

    Google Scholar 

  134. Kolahi M.R., Nemati A., Yari M., Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm. Geothermics, 2018, 74: 45–56.

    Article  Google Scholar 

  135. Pandey S., Dwivedi A., Ahmad S., Arora A., Parametric analysis of geothermal organic Rankine cycle working on zeotropic mixture of R600a/DME. International Journal of Advanced Production and Industrial Engineering, 2018, 3(3): 33–46.

    Google Scholar 

  136. Almutairi K., Dehshiri S.S.H., Mostafaeipour A., Issakhov A., Techato K., Dhanraj J.A., Performance optimization of a new flash-binary geothermal cycle for power/hydrogen production with zeotropic fluid. Journal of Thermal Analysis and Calorimetry, 2021, 145(3): 1633–1650.

    Article  Google Scholar 

  137. Jiang F., Zhu J., Hu K., Xin G., Zhao Y., Applied research to assess envaporator performances in orc system by pearson correlation coefficient. Acta Energiae Solaris Sinica, 2019, 040(010): 2732–2738. (in Chinese)

    Google Scholar 

  138. Yang X.L., Pu S.J., Dai W.Z., Li W.K., Li Q., Thermal analysis of power cooling system of rankine circulation-jet refrigeration. Journal of Liaoning Technical University (Natural Science), 2019, 241(3): 57–62. (in Chinese)

    Google Scholar 

  139. Liu M., Zhang N., Cai R.X., A novel gas-ammonia/water combined cycle for power and refrigeration cogeneration. Proceedings of the CSEE, 2006, 26(17): 82–87. (in Chinese)

    Google Scholar 

  140. Goswami D.Y., Xu F., Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors. Journal of Solar Energy Engineering, 1999, 121(2): 91–97.

    Article  Google Scholar 

  141. Zheng D.X., Chen B., Qi Y., Jin H.G., Thermodynamic analysis of a new ammonia absorption power/refrigeration complex cycle. Journal of Engineering Thermophysics, 2002, (5): 539–542. (in Chinese)

  142. Zhang N., Cai R., Lior N., A novel ammonia-water cycle for power and refrigeration cogeneration, in: ASME International Mechanical Engineering Congress & Exposition, 2004.

  143. Zhang N., Lior N., Methodology for thermal design of novel combined refrigeration/power binary fluid systems. International Journal of Refrigeration, 2007, 30(6): 1072–1085.

    Article  Google Scholar 

  144. Wang J., Dai Y., Gao L., Parametric analysis and optimization for a combined power and refrigeration cycle. Applied Energy, 2008, 85(11): 1071–1085.

    Article  Google Scholar 

  145. Yang X., Zhao L., Li H., Yu Z., Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture. Applied Energy, 2015, 160(DEC.15): 912–919.

    Article  Google Scholar 

  146. Dai Y., Wang J., Gao L., Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle. Applied Thermal Engineering, 2009, 29(10): 1983–1990.

    Article  Google Scholar 

  147. Zheng B., Weng Y.W., A combined power and ejector refrigeration cycle for low temperature heat sources. Proceedings of the Csee, 2010, 84(5): 784–791.

    Google Scholar 

  148. Yang X., Zhao L., Thermodynamic analysis of a combined power and ejector refrigeration cycle using zeotropic mixtures, Applied Energy, 2015, 160: 912–919.

    Article  Google Scholar 

  149. Saleh B., Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy. Journal of Advanced Research, 2016, 7(5): 651–660.

    Article  Google Scholar 

  150. Zheng N., Wei J., Zhao L., Analysis of a solar Rankine cycle powered refrigerator with zeotropic mixtures. Solar Energy, 2018, 162: 57–66.

    Article  ADS  Google Scholar 

  151. Wang Y., Zhao Z., Zhang X., Performance analysis of ORC-VCR system driven by low grade waste heat. Chemical Engineering (China), 2019, 047(012): 39–43, 58. (in Chinese)

    Google Scholar 

  152. Hou S., Zhou Y., Yu L., Zhang F., Cao S., Optimization of the combined supercritical CO2 cycle and organic Rankine cycle using zeotropic mixtures for gas turbine waste heat recovery. Energy Conversion & Management, 2018, 160: 313–325.

    Article  Google Scholar 

  153. Wang Y., Yu L., Nazir B., Zhang L., Rahmani H., Innovative geothermal-based power and cooling cogeneration system; Thermodynamic analysis and optimization. Sustainable Energy Technologies and Assessments, 2021, 44(1): 101070.

    Article  Google Scholar 

  154. Feili M., Rostamzadeh H., Ghaebi H., A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle. Renewable Energy, 2020, 162: 2126–2152.

    Article  Google Scholar 

  155. Pan M., Bian X., Zhu Y., Liang Y., Lu F., Xiao G., Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery. Energy Conversion and Management, 2020, 224: 113373.

    Article  Google Scholar 

  156. Liao G., Liu L., Zhang F., Jiaqiang E., Chen J., A Novel Combined Cooling-Heating and Power (CCHP) system integrated organic Rankine cycle for waste heat recovery of bottom slag in coal-fired plants. Energy Conversion and Management, 2019, 186: 380–392.

    Article  Google Scholar 

  157. Ding P., Zhang K., Yuan Z., Wang Z., Li D., Chen T., Shang J., Shofahaei R., Multi-objective optimization and exergoeconomic analysis of geothermal-based electricity and cooling system using zeotropic mixtures as the working fluid. Journal of Cleaner Production, 2021, 294: 126237.

    Article  Google Scholar 

  158. Tian H., Ma Y., Porformance comparison of nature refrigerant refrigerating system. Fluid Machinery, 2008, 36(2): 51–55. (in Chinese)

    Google Scholar 

  159. Zhou P., Liang R., Lin Q., Present research situation and prospect of the natural working fluid-hydrocarbon. Refrigeration, 2004, 023(002): 25–28. (in Chinese)

    Google Scholar 

  160. Wu X., Zhao R., Wei Z., HUANG X., WANG W., Experimental studies on flow boiling heat transfer of R744/R290 mixtures in a horizontal tube. Journal of Engineering Thermophysics, 2013, 34(4): 706–709.

    Google Scholar 

  161. Pan L., Wei X., Shi W., Performance analysis of a zeotropic mixture (R290/CO2) for trans-critical power cycle. Chinese Journal of Chemical Engineering, 2015, 23(3): 572–577.

    Article  Google Scholar 

  162. Pan L., Ma Y., Li T., Li H., Wei X., Investigation on the flammability of the mixed working fluid (R600/CO2). Journal of Engineering Thermophysics, 2019, 40(04): 732–736. (in Chinese)

    Google Scholar 

  163. Zhang X., Fan X.W., Wei X., Wang F., Zhang X., Research on condensation pressure and temperature of heat pumps using blends of CO2 with Butane and Isobutane. Lecture Notes in Electrical Engineering, 2014, 262: 791–797.

    Article  Google Scholar 

  164. Niu B., Zhang Y., Performance of binary mixture of CO2/R170 as low temperature circuit refrigerant in cascade refrigeration system. Journal of Chemical Industry and Engineering (China), 2007, 58(003): 555–561. (in Chinese)

    Google Scholar 

  165. Wang D., Liu Y., Kou Z., Yao L., Lu Y., Tao L., Xia P., Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 106: 628–638.

    Article  Google Scholar 

  166. Braimakis K., Grispos V., Karellas S., Exergetic efficiency potential of double-stage ORCs with zeotropic mixtures of natural hydrocarbons and CO2. Energy, 2021, 218: 119577.

    Article  Google Scholar 

  167. Guo T., Wang H., Zhang S., Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source. Science China, 2010, 53: 1638–1646.

    Article  Google Scholar 

  168. Wu M., Shu G., Tian H., Liu Y., Wang X., Yan N., Flammability research of isobutane/CO2 mixture used in Organic Rankine Cycle for engine waste heat recovery. Journal of Thermal Science and Technology, 2018, 17(004): 318–323. (in Chinese)

    Google Scholar 

  169. Zhang G., Zhang X., Theoretical analysis on refrigerating systems using CO2 as zeotropic mixture refrigerant. Cryogenics, 2009, (1): 49–52.

  170. Li W., Yang X., Huang F., Ren S., Thermodynamic analysis of coupled organic Rankine cycle using working fluid of zeotropic mixtures and CO2. Journal of Thermal Science and Technology, 2017, 16(6): 431–438.

    Google Scholar 

  171. Zhang X., Wang F., Duan H., Chen A., Heating performance of zeotropic mixture and temperature glide matching with secondary fluid. International Conference on Advanced Materials and Computer Science, Chengdu, China, 2011, Part3: 103–106.

  172. Wu W., Jia S., Wu J., Zhang H., Research progress on refrigeration systems using CO2 mixture refrigerant to reduce its cycle pressure. Chemical Industry and Engineering Progress, 2017, 36(6): 1969–1976. (in Chinese)

    Google Scholar 

  173. Liao G., Liu L., E J., Zhang F., Chen J., Deng Y., Zhu H., Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review. Energy Conversion and Management, 2019, 199: 111986.

    Article  Google Scholar 

  174. Feng L., Zheng D., Chen J., Shi L., Heat conversion mechanism for CO2+dimethyl ether absorption power trans-critical cycle. Journal of Engineering Thermophysics, 2019, 40(05): 10–15. (in Chinese)

    Google Scholar 

  175. Dai B., Liu S., Sun Z., Ma M., Chen Q., Ma Y., Performance analysis of transcritical CO2 refrigeration cycle with mechanical subcooling employing zeotropic mixture as working fluid. Journal of Refrigeration, 2018, 039(006): 46–53, 69. (in Chinese)

    Google Scholar 

  176. Zhang G., Zhang X., Theoretical analysis on refrigerating systems using CO2 as zeotropic mixture refrigerant. Cryogenics, 2009, 01(1): 49–49. (in Chinese)

    MathSciNet  Google Scholar 

  177. Kim J.H., Cho J.M., Kim M.S., Cooling performance of several CO2/propane mixtures and glide matching with secondary heat transfer fluid. International Journal of Refrigeration, 2008, 31(5): 800–806.

    Article  Google Scholar 

  178. Pan L., Ma Y., Li T., Li H., Wei X., Investigation on the flammability of the mixed working fluid (R600/CO2). Journal of Engineering Thermophysics, 2019, 40(04): 732–736. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Key Research and Development Plan of China (Grant No.2018YFB0905103) and the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2019009-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhao or Ruikai Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Zhao, L. & Zhao, R. Review on Applications of Zeotropic Mixtures. J. Therm. Sci. 31, 285–307 (2022). https://doi.org/10.1007/s11630-022-1569-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1569-x

Keywords

Navigation