Skip to main content

Advertisement

Log in

A Review on Modeling of Bionic Flow Control Methods for Large-Scale Wind Turbine Blades

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Due to complicated working conditions, the normal operating large-scale wind turbine blades are often suffering from some inevitable problems, i.e., friction adhesion, flow separation and acoustic noise, which may significantly affect the aerodynamic performance of the blades and thus the wind turbine system. Therefore, effective measurements must be taken to solve these issues. Correspondingly, several novel bionic flow control methods by mimicking shark skin, whale fin and owl wing, i.e., riblet, leading-edge protuberance and trailing-edge serration, have been recently studied, and good progresses have been made in terms of effectiveness, analysis and mechanism. However, these potential techniques are unable to be widely applied within wind energy community due to the lack of reasonable modeling methods, clearly reflecting the effect of bionic structures on the flow field around, which results in incapability to carry out further optimal design of bionic blade. To this end, this review paper first concentrated on a summary of the control mechanisms of three bionic techniques. Based on this, some feasible ideas of model buildup were proposed. Finally, the flow analyses around the typical blade airfoils were chosen as case studies to verify the feasibility and accuracy of these simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean B., Bhushan B., Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1929): 4775–4806.

    Article  ADS  Google Scholar 

  2. Luo Y., Recent progress in exploring drag reduction mechanism of real sharkskin surface: a review. Journal of Mechanics in Medicine and Biology, 2015, 15(3): 1530002.

    Article  Google Scholar 

  3. Bolzon M.D., Kelso R.M., Arjomandi M., Tubercles and their applications. Journal of Aerospace Engineering, 2016, 29(1): 04015013.

    Article  Google Scholar 

  4. Wang Y., Zhao K., Lu X.Y., et al., Bio-inspired aerodynamic noise control: a bibliographic review. Applied Sciences, 2019, 9(11): 2224.

    Article  Google Scholar 

  5. Walsh M.J., Riblets as a viscous drag reduction technique. AIAA Journal, 1983, 21(4): 485–486.

    Article  ADS  Google Scholar 

  6. Choi H., Moin P., Kim J., Direct numerical simulation of turbulent flow over riblets. Journal of Fluid Mechanics, 1993, 255: 503–539.

    Article  MATH  ADS  Google Scholar 

  7. Bechert D.W., Bruse M., Hage W., et al., Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997, 338: 59–87.

    Article  ADS  Google Scholar 

  8. Garcia-Mayoral R., Jimenez J., Hydrodynamic stability and breakdown of the viscous regime over riblets. Journal of Fluid Mechanics, 2011, 678: 317.

    Article  MATH  ADS  Google Scholar 

  9. Zhang M.M., Zhang L., Zhao M., Investigation on the mechanism of drag modification over triangular riblets. Journal of Applied Fluid Mechanics, 2020, 13(4): 1093–1106.

    Article  Google Scholar 

  10. Zhang Z.L., Zhang M.M., Cai C., et al., Characteristics of large-and small-scale structures in the turbulent boundary layer over a drag-reducing riblet surface. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(3): 796–807.

    Google Scholar 

  11. Zhang Z., Zhang M., Cai C., et al., A general model for riblets simulation in turbulent flows. International Journal of Computational Fluid Dynamics, 2020, 34(5): 333–345.

    Article  MathSciNet  ADS  Google Scholar 

  12. Sareen A., Deters R.W., Henry S.P., et al., Drag reduction using riblet film applied to airfoils for wind turbines. Journal of Solar Energy Engineering, 2014, 136(2): 021007.

    Article  Google Scholar 

  13. Chamorro L.P., Arndt R.E.A., Sotiropoulos F., Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies. Renewable Energy, 2013, 50: 1095–1105.

    Article  Google Scholar 

  14. Zhang Y., Chen H., Fu S., et al., Numerical study of an airfoil with riblets installed based on large eddy simulation. Aerospace Science and Technology, 2018, 78: 661–670.

    Article  Google Scholar 

  15. Debisschop J.R., Nieuwstadt F.T.M., Turbulent boundary layer in an adverse pressure gradient—Effectiveness of riblets. AIAA Journal, 1996, 34(5): 932–937.

    Article  ADS  Google Scholar 

  16. Boomsma A., Sotiropoulos F., Riblet drag reduction in mild adverse pressure gradients: A numerical investigation. International Journal of Heat and Fluid Flow, 2015, 56: 251–260.

    Article  Google Scholar 

  17. Zhang M.M., Wang G.F., Xu J.Z., Experimental study of flow separation control on a low-Re airfoil using leading-edge protuberance method. Experiments in fluids, 2014, 55(4): 1–13.

    Article  Google Scholar 

  18. Rostamzadeh N., Hansen K.L., Kelso R.M., et al., The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification. Physics of Fluids, 2014, 26(10): 107101.

    Article  ADS  Google Scholar 

  19. Zhang Y., Zhang M., Cai C., Flow control on wind turbine airfoil affected by the surface roughness using leading-edge protuberance. Journal of Renewable and Sustainable Energy, 2019, 11(6): 063304.

    Article  Google Scholar 

  20. Hansen K.L., Effect of leading edge tubercles on airfoil performance. University of Adelaide, Adelaide, Australia, 2012.

    Google Scholar 

  21. Zhang M.M., Wang G.F., Xu J.Z., Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances. AIAA Journal, 2013, 51(8): 1960–1971.

    Article  ADS  Google Scholar 

  22. Weber P.W., Howle L.E., Murray M.M., Lift, drag and cavitation onset on rudders with leading-edge tubercles. Marine Technology and SNAME News, 2010, 47(1): 27–36.

    Article  Google Scholar 

  23. Lin C.H., Preliminary study on the effect of leading edge protuberances on B-series propeller’s performance. National Cheng Kung University, Tainan, Taiwan, 2009.

    Google Scholar 

  24. Wei Z., Zang B., New T.H., et al., A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles. Ocean Engineering, 2016, 121: 356–368.

    Article  Google Scholar 

  25. Gruschka H.D., Borchers I.U., Coble J.G., Aerodynamic noise produced by a gliding owl. Nature, 1971, 233(5319): 409–411.

    Article  ADS  Google Scholar 

  26. Sarradj E., Fritzsche C., Geyer T., Silent owl flight: bird flyover noise measurements. AIAA journal, 2011, 49(4): 769–779.

    Article  ADS  Google Scholar 

  27. Gruber M., Joseph P., Chong T.P., Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations. 16th AIAA/CEAS aeroacoustics conference. 2010: 3803. DOI: https://doi.org/10.2514/6.2010-3803.

  28. Gruber M., Joseph P., Chong T., On the mechanisms of serrated airfoil trailing edge noise reduction. 17th AIAA/CEAS aeroacoustics conference (32nd AIAA aeroacoustics conference), 2011, AIAA 2011–2781. DOI: https://doi.org/10.2514/6.2011-2781.

  29. Chong T.P., Joseph P.F., Gruber M., Airfoil self noise reduction by non-flat plate type trailing edge serrations. Applied Acoustics, 2013, 74(4): 607–613.

    Article  Google Scholar 

  30. Moreau D.J., Doolan C.J., Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA journal, 2013, 51(10): 2513–2522.

    Article  ADS  Google Scholar 

  31. Chong T.P., Vathylakis A., On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge. Journal of Sound and Vibration, 2015, 354: 65–90.

    Article  ADS  Google Scholar 

  32. León C.A., Ragni D., Pröbsting S., et al., Flow topology and acoustic emissions of trailing edge serrations at incidence. Experiments in Fluids, 2016, 57(5): 91.

    Article  ADS  Google Scholar 

  33. Avallone F., Pröbsting S., Ragni D., Three-dimensional flow field over a trailing-edge serration and implications on broadband noise. Physics of Fluids, 2016, 28(11): 117101.

    Article  ADS  Google Scholar 

  34. Jones L.E., Sandberg R.D., Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations. Journal of Fluid Mechanics, 2012, 706: 295.

    Article  MATH  ADS  Google Scholar 

  35. Arina R., Della Ratta Rinaldi R., Iob A., et al., Numerical study of self-noise produced by an airfoil with trailing-edge serrations. 18th AIAA/CEAS aeroacoustics conference (33rd AIAA aeroacoustics conference), 2012, AIAA 2012–2184. DOI: https://doi.org/10.2514/6.2012-2184.

  36. Avallone F., Van Der Velden W.C.P., Ragni D., et al., Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations. Journal of Fluid Mechanics, 2018, 848: 560–591.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Zuo Z., Huang Q., Liu S., An analysis on the flow field structures and the aerodynamic noise of airfoils with serrated trailing edges based on embedded large eddy flow simulations. Journal of Applied Fluid Mechanics, 2019, 12(2): 327–339.

    Article  ADS  Google Scholar 

  38. Oerlemans S., Fisher M., Maeder T., et al., Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA journal, 2009, 47(6): 1470–1481.

    Article  ADS  Google Scholar 

  39. Choi K.S., Near-wall structures of a turbulent boundary layer with riblets. Journal of Fluid Mechanics, 1989, 208: 417–458.

    Article  ADS  Google Scholar 

  40. Benschop H.O.G., Breugem W.P., Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow. Journal of Turbulence, 2017, 18(8): 717–759.

    Article  MathSciNet  ADS  Google Scholar 

  41. Lee S.J., Choi Y.S., Decrement of spanwise vortices by a drag-reducing riblet surface. Journal of Turbulence, 2008, 9: N23.

    Article  ADS  Google Scholar 

  42. Grüneberger R., Hage W., Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings. Experiments in Fluids, 2011, 50(2): 363–373.

    Article  ADS  Google Scholar 

  43. Luchini P., Manzo F., Pozzi A., Resistance of a grooved surface to parallel flow and cross-flow. Journal of Fluid Mechanics, 1991, 228: 87–109.

    MATH  ADS  Google Scholar 

  44. Martin S., Bhushan B., Fluid flow analysis of a shark-inspired microstructure. Journal of fluid mechanics, 2014, 756: 5–29.

    Article  ADS  Google Scholar 

  45. Garcia-Mayoral R., Jiménez J., Drag reduction by riblets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1940): 1412–1427.

    Article  ADS  Google Scholar 

  46. Kim J., Moin P., Moser R., Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 1987, 177: 133–166.

    Article  MATH  ADS  Google Scholar 

  47. Robinson S.K., Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991, 23(1): 601–639.

    Article  ADS  Google Scholar 

  48. Lee S.J., Lee S.H., Flow field analysis of a turbulent boundary layer over a riblet surface. Experiments in Fluids, 2001, 30(2): 153–166.

    Article  ADS  Google Scholar 

  49. Huang C., Liu D., Wei J., Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels. Chemical Engineering Science, 2016, 152: 267–279.

    Article  Google Scholar 

  50. Martin S., Bhushan B., Modeling and optimization of shark-inspired riblet geometries for low drag applications. Journal of Colloid and Interface Science, 2016, 474: 206–15.

    Article  ADS  Google Scholar 

  51. Rastegari A., Akhavan R., The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. Journal of Fluid Mechanics, 2018, 838: 68–104.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Rastegari A., Akhavan R., On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. Journal of Fluid Mechanics, 2015, 773: 1–14.

    Article  MathSciNet  Google Scholar 

  53. Mele B., Tognaccini R., Slip length-based boundary condition for modeling drag reduction devices. AIAA Journal, 2018, 56(9): 3478–3490.

    Article  ADS  Google Scholar 

  54. Aupoix B., Pailhas G., Houdeville R., Towards a general strategy to model riblet effects. AIAA Journal, 2012, 50(3): 708–716.

    Article  ADS  Google Scholar 

  55. Koepplin V., Herbst F., Seume J.R., Correlation-based riblet model for turbomachinery applications. Journal of Turbomachinery, 2017, 139(7): 071006.

    Article  Google Scholar 

  56. Yang Y., Ming-Ming Z., Xue-Song L., Numerical investigation of V-shaped riblets and an improved model of riblet effects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(9): 1622–1631.

    Google Scholar 

  57. Wilcox D.C., Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 1988, 26(11): 1299–1310.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Saffman P.G., A model for inhomogeneous turbulent flow. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 317(1530): 417–433.

    Article  MATH  ADS  Google Scholar 

  59. Mele B., Tognaccini R., Numerical simulation of riblets on airfoils and wings. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012, AIAA 2012-0861. DOI: https://doi.org/10.2514/6.2012-861.

  60. Mele B., Tognaccini R., Catalano P., Performance assessment of a transonic wing—Body configuration with riblets installed. Journal of Aircraft, 2016, 53(1): 129–140.

    Article  Google Scholar 

  61. Dean R.B., Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Journal of Fluid Engineering, 1978, 100: 215–223.

    Article  Google Scholar 

  62. Schlichting H., Gersten K., Boundary-layer theory. Springer, 2016.

  63. Johari H., Henoch C.W., Custodio D., et al., Effects of leading-edge protuberances on airfoil performance. AIAA Journal, 2007, 45(11): 2634–2642.

    Article  ADS  Google Scholar 

  64. Miklosovic D.S., Murray M.M., Howle L.E., et al., Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 2004, 16(5): L39–L42.

    Article  MATH  ADS  Google Scholar 

  65. Slangen R.A., Experimental investigation of artificial boundary layer transition: A comparison of different tripping devices. Delft University of Technology, Delft, Netherlands, 2009.

    Google Scholar 

  66. Seshagiri A., Cooper E., and Traub L.W., Effects of vortex generators on an airfoil at low Reynolds numbers. Journal of Aircraft, 2009, 46(1): 116–122.

    Article  Google Scholar 

  67. Stein B., Murray M.M., Stall mechanism analysis of humpback whale flipper models. Proceedings of Unmanned Untethered Submersible Technology (UUST), UUST05, 2005.

  68. Custodio D., The effect of humpback whale-like leading edge protuberances on hydrofoil performance. Worcester Polytechnic Institute, Worcester, USA, 2007.

    Google Scholar 

  69. Hansen K.L., Kelso R.M., Dally B.B., Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA Journal, 2011, 49(1): 185–194.

    Article  ADS  Google Scholar 

  70. Stanway M.J., Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. Massachusetts Institute of Technology, Cambridge, USA, 2008.

    Google Scholar 

  71. Hansen K.L., Rostamzadeh N., Kelso R.M., et al., Evolution of the streamwise vortices generated between leading edge tubercles. Journal of Fluid Mechanics, 2016, 788: 730–766.

    Article  ADS  Google Scholar 

  72. Godard G., Stanislas M., Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators. Aerospaceence and Technology, 2006, 10(3): 181–191.

    Article  Google Scholar 

  73. Nierop E.A.V., Alben S., Brenner M.P., How bumps on whale flippers delay stall: An aerodynamic model. Physical Review Letters, 2008, 100(5): 054502.

    Article  ADS  Google Scholar 

  74. Hansen K.L., Kelso R.M., and Dally B.B., The effect of leading edge tubercle geometry on the performance of different airfoils. Proceeding of 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Elsevier, 2009.

  75. Watts P., Fish F.E., The influence of passive, leading edge tubercles on wing performance. Unmanned Untethered Submersible Technology (UUST), Autonomous Undersea Systems Institute, Lee, NH, 2001.

    Google Scholar 

  76. Anderson Jr J.D., Fundamentals of aerodynamics. Tata McGraw-Hill Education, 2010.

  77. Rostamzadeh N., Kelso R. M., Dally B.B., et al., The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics. Physics of Fluids, 2013, 25(11): 1411–1432.

    Article  Google Scholar 

  78. Cai C., Liu S., Zuo Z., et al., Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Physics of Fluids, 2019, 31(2): 027103.

    Article  ADS  Google Scholar 

  79. Brooks T.F., Pope D.S., Marcolini M.A., Airfoil self-noise and prediction. Washington, DC: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

  80. Finez A., Jacob M., Roger M., et al., Broadband noise reduction of linear cascades with trailing edge serrations. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). 2011, AIAA 2011–2874. DOI: https://doi.org/10.2514/6.2011-2874.

  81. Williams J.E.F., Hall L.H., Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. Journal of Fluid Mechanics, 1970, 40(4): 657–670.

    Article  MATH  ADS  Google Scholar 

  82. Woodhead P.C., Chong T.P., Wissink J., Exploiting the misalignment of the serrated trailing edge for improved aerofoil broadband noise reduction. 23rd AIAA/CEAS Aeroacoustics Conference. 2017, AIAA 2017–4175. DOI: https://doi.org/10.2514/6.2017-4175.

  83. Liu X., Kamliya Jawahar H., Azarpeyvand M., et al., Aerodynamic performance and wake development of airfoils with serrated trailing-edges. AIAA Journal, 2017, 55(11): 3669–3680.

    Article  ADS  Google Scholar 

  84. Llorente E., Ragni D., Trailing edge serrations effects on the aerodynamic performance of a NACA 643418. Wind Energy, 2019, 22(3): 392–406.

    Article  ADS  Google Scholar 

  85. Llorente E., Ragni D., Trailing-edge serrations effect on the performance of a wind turbine. Renewable Energy, 2020, 147: 437–446.

    Article  Google Scholar 

  86. Lyu B., Azarpeyvand M., Sinayoko S., Prediction of noise from serrated trailing edges. Journal of Fluid Mechanics, 2016, 793: 556–588.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  87. Amiet R.K., Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound and Vibration, 1975, 41(4): 407–420.

    Article  MATH  ADS  Google Scholar 

  88. Graham W.R., A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. Journal of Sound and Vibration, 1997, 206(4): 541–565.

    Article  ADS  Google Scholar 

  89. Parchen R.R., Progress report DRAW: A prediction scheme for trailing edge noise based on detailed boundary layer characteristics. TNO-Report HAGRPT, TNO Institute of Applied Physics, 1998.

  90. Fischer A., Bertagnolio F., Shen W.Z., et al., Noise model for serrated trailing edges compared to wind tunnel measurements. Journal of Physics: Conference Series. IOP Publishing, 2016, 753(2): 022053. DOI: https://doi.org/10.1088/1742-6596/753/2/022053.

    Google Scholar 

  91. Mayer Y.D., Lyu B., Jawahar H.K., et al., A semi-analytical noise prediction model for airfoils with serrated trailing edges. Renewable Energy, 2019, 143: 679–691.

    Article  Google Scholar 

  92. Howe M.S., Noise produced by a sawtooth trailing edge. The Journal of the Acoustical Society of America, 1991, 90(1): 482–487.

    Article  ADS  Google Scholar 

  93. Howe M.S., Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures, 1991, 5(1): 33–45.

    Article  ADS  Google Scholar 

  94. Houghton E.L., Carpenter P.W., Aerodynamics for engineering students. Elsevier, 2003.

  95. Cao H., Zhang M., Cai C., et al., Flow topology and noise modeling of trailing edge serrations. Applied Acoustics, 2020, 168: 107423.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51736008) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21050303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Zhang.

Additional information

Introduction of the first/corresponding author(s)

Dr. ZHANG Mingming is a research professor at the Institute of Engineering Thermophysics, Chinese Academy of Sciences (CAS). He obtained his Ph.D. in Engineering from the Hong Kong Polytechnic University in 2004. He is an associate editor of both Renewable Energy and Wind Energy Science—The International Journals. His major research works include wind turbine blade, wind farm, offshore wind turbine and heat utilization generated by wind, etc. He has published approximately 120 scientific papers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Y., Cai, C. et al. A Review on Modeling of Bionic Flow Control Methods for Large-Scale Wind Turbine Blades. J. Therm. Sci. 30, 743–757 (2021). https://doi.org/10.1007/s11630-021-1444-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1444-1

Keywords

Navigation