Skip to main content
Log in

Linear Stability Analysis of Thermocapillary Flow in Rotating Shallow Pools Heated from Inner Wall

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Thermocapillary flow of silicon melt (Pr=0.011) in shallow annular pool heated from inner wall was simulated at the dimensionless rotation rate ω ranging from 0~7000. The effect of pool rotation on the stability of the thermocapillary flow was investigated. The steady axisymmetric basic state was solved by using the spectral element method; the critical stability parameters were determined by linear stability analysis; the mechanism of the flow instability was explored by the analysis of energy balance. A stability diagram, exhibiting the variation of the critical Marangoni number versus the dimensionless rotation rate ω was presented. The results reveal that only one Hopf bifurcation point appeared in the intervals of ω<3020 and ω>3965, and the corresponding instability was caused by the shear energy, which was provided by the thermocapillary force and pool rotation, respectively. In addition, the competition between thermocapillary force and pool rotation leads to three Hopf bifurcation points in the range of 3020<ω<3965 with the increase of Marangoni number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langlois W.E., Digital simulation of Czochralski bulk flow in microgravity. Journal of Crystal Growth, 1980, 48: 25–28.

    Article  ADS  Google Scholar 

  2. Zeng Z., Mizuseki H., Shimamura K., Higashino K., Fukuda T., Kawazoe Y., Marangoni convection in model of floating zone under microgravity. Journal of Crystal Growth, 2001, 229: 601–604.

    Article  ADS  Google Scholar 

  3. Zeng Z., Chen J., Mizuseki H., Shishido T., Ichinoseki K., Kawazoe Y., Marangoni convection in the LiCaAIF6 crystal growth by the Czochralski technique. Journal of Thermal Science, 2002, 11: 348–252.

    Article  ADS  Google Scholar 

  4. Schwabe D., Moller U., Schneider J., Scharmann A., Instabilities of shallow dynamic thermocapillary liquid layers. Physics of Fluids A: Fluid Dynamics, 1992, 4: 2368–2381.

    Article  ADS  Google Scholar 

  5. Garnier N., Chiffaudel A., Two dimensional hydrothermal waves in an extended cylindrical vessel. The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 19: 87–95.

    Article  ADS  Google Scholar 

  6. Schwabe D., Zebib A., Sim B.C., Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity.. Journal of Fluid Mechanics, 2003, 491: 239–258.

    Article  ADS  Google Scholar 

  7. Kang Q., Duan L., Zhang L., Yin Y., Yang J., Hu W., Thermocapillary convection experiment facility of an open cylindrical annuli for SJ-10 satellite. Microgravity Science and Technology, 2016, 28: 123–132.

    Article  ADS  Google Scholar 

  8. Zhang Y., Huang H.L., Zhou X.M., Zhu G.P., Zou Y., Effect of Marangoni number on thermocapillary convection and free-surface deformation in liquid bridges. Journal of Thermal Science, 2016, 25(2): 178–187.

    Article  ADS  Google Scholar 

  9. Lavalley R., Amberg G., Alfredsson H., Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry. European Journal of Mechanics-B/Fluids, 2001, 20: 771–797.

    Article  ADS  Google Scholar 

  10. Sim B.C., Zebib, A., Schwabe, D., Oscillatory thermocapillary convection in open cylindrical annuli. Part 2. Simulations. Journal of Fluid Mechanics, 2003, 491: 259–274.

    Article  Google Scholar 

  11. Li Y.R., Peng L., Akiyama Y., Imaishi N., Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. Journal of Crystal Growth, 2003, 259: 374–387.

    Article  ADS  Google Scholar 

  12. Schwabe D., Benz S., Thermocapillary flow instabilities in an annulus under microgravity-results of the experiment magia. Advances in Space Research, 2002, 29: 629–638.

    Article  ADS  Google Scholar 

  13. Shi W., Imaishi N., Hydrothermal waves in differentially heated shallow annular pools of silicone oil. Journal of Crystal Growth, 2006, 290: 280–291.

    Article  ADS  Google Scholar 

  14. Smith M.K., Davis S.H., Instabilities of dynamic thermocapillary liquid layers. part 1. Convective instabilities. Journal of Fluid Mechanics, 1983, 132: 119–144.

    Article  Google Scholar 

  15. Smith M.K., Davis S.H., Instabilities of dynamic thermocapillary liquid layers. part 2. surface-wave instabilities. Journal of Fluid Mechanics, 1983, 132: 145–162.

    MATH  Google Scholar 

  16. Hoyas S., Herrero H., Mancho A.M., Thermal convection in a cylindrical annulus heated laterally. Journal of Physics A: Mathematical and General, 2002, 35: 4067–4083.

    Article  ADS  MathSciNet  Google Scholar 

  17. Rosenstein Y., Bar-Yoseph P.Z., Three-dimensional instabilities in Czochralski process of crystal growth from silicon melt. Journal of Crystal Growth, 2007, 305: 185–191.

    Article  ADS  Google Scholar 

  18. Li Y.R., Liu Y.S., Shi W.Y., Peng L., Stability of thermocapillary convection in annular pools with low Prandtl number fluid. Microgravity Science and Technology, 2009, 21: 283–287.

    Article  ADS  Google Scholar 

  19. Torregrosa A.J., Hoyas S., Perez-Quiles M.J., Mompo-Laborda J.M., Bifurcation diversity in an annular pool heated from below: Prandtl and Biot numbers effects. Communications in Computational Physics, 2013, 13: 428–441.

    Article  ADS  Google Scholar 

  20. Zebib A., Thermocapillary instabilities with system rotation. Physics of Fluids, 1996, 8: 3209–3211.

    Article  ADS  MathSciNet  Google Scholar 

  21. Li Y.R., Xiao L., Wu S.Y., Imaishi N., Effect of pool rotation on flow pattern transition of silicon melt thermocapillary flow in a slowly rotating shallow annular pool. International Journal of Heat and Mass Transfer, 2008, 51: 1810–1817.

    Article  Google Scholar 

  22. Shi W., Li Y.R., Ermakov M.K., Imaishi N., Stability of thermocapillary convection in rotating shallow annular pool of silicon melt. Microgravity Science and Technology, 2010, 22: 315–320.

    Article  ADS  Google Scholar 

  23. Shvarts K.G., Influence of slow rotation on the stability of a thermocapillary incompressible liquid flow in an infinite layer under zero-gravity conditions for small Prandtl number. Fluid Dynamics Research, 2012, 44: 1–14.

    Article  MathSciNet  Google Scholar 

  24. Shen T., Wu C.M., Li Y.R., Experimental investigation on the effect of crystal and crucible rotation on thermocapillary convection in a Czochralski configuration. International Journal of Thermal Sciences, 2016, 104: 20–28.

    Article  Google Scholar 

  25. Yin L., Zeng Z., Qiu Z., Mei H., Zhang L., Zhang Y., Linear stability analysis of thermocapillary flow in a slowly rotating shallow annular pool using spectral element method. International Journal of Heat and Mass Transfer, 2016, 97: 353–363.

    Article  Google Scholar 

  26. Mei H., Zeng Z., Qiu Z., Li L., Yao L., Mizuseki H., Kawazoe Y., Numerical simulation of crucible rotation in high-temperature solution growth method using a Fourier-Legendre spectral element method. International Journal of Heat and Mass Transfer, 2013, 64: 882–891.

    Article  Google Scholar 

  27. Karniadakis G.E., Israeli M., Orszag S.A., High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 1991, 97: 414–443.

    Article  ADS  MathSciNet  Google Scholar 

  28. Qiu Z., Zeng Z., Mei H., Li L., Yao L., Zhang L., A Fourier-Legendre spectral element method in polar coordinates. Journal of Computational Physics, 2012, 231: 666–675.

    Article  ADS  MathSciNet  Google Scholar 

  29. Boppana V.B.L., Gajjar J.S.B., Global flow instability in a lid-driven cavity. International Journal for Numerical Methods in Fluids, 2010, 62: 87–853.

    MathSciNet  MATH  Google Scholar 

  30. Wanschura M., Shevtsova V.M., Kuhlmann H.C., Rath H.J., Convective instability mechanisms in thermocapillary liquid bridges. Physics of Fluids, 1995, 7: 912–925.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of P. R. China (No. 11572062), and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_17R112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Za., Zeng, Z., Liu, H. et al. Linear Stability Analysis of Thermocapillary Flow in Rotating Shallow Pools Heated from Inner Wall. J. Therm. Sci. 29, 251–259 (2020). https://doi.org/10.1007/s11630-019-1156-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1156-y

Keywords

Navigation