Skip to main content
Log in

Marangoni convection in the LiCaAIF6 crystal growth by the Czochralski technique

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Numerical simulation of the mixed convection induced by buoyancy, crystal rotation, and also unbalanced surface tension at the melt-gas interface is conducted by means of the finite volume method in the model of the Czochralski crystal growth. The role of Marangoni convection in the heat and mass transfer is investigated by the comparison of the models with and without surface tension included, and our results indicate that Marangoni convection plays an important role in the heat and mass transfer near the interface of melt and crystal, and also the convection structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimamura, K, Baldochi, S L, Ranieri, I M, et al. Crystal Growth of Ce-doped and Undoped LiCaAlF6 by the Czochralski Technique under CF4 Atmosphere. J. Crystal Growth., 2001, 223: 383

    Article  Google Scholar 

  2. Shimamura, K, Baldochi, S L, Mujilatu, N, et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 Single Crystals by the Czochralski Technique under CF4 Atmosphere. J. Crystal Growth., 2000, 211: 302

    Article  Google Scholar 

  3. Basu, B, Enger, S, Breuer, M, et al. Three-dimensional Simulation of Flow and Thermal Field in a Czochralski Melt Using a Block-structured Finite-volume Method. J. Crystal Growth., 2000, 219: 123–143

    Article  Google Scholar 

  4. Seidl, A, McCord, G, Muller, G, et al. Experimental Observation and Numerical Simulation of Wave Patterns in a Czochralski Silicon Melt J. Crystal Growth., 1994, 137: 326–334

    Article  ADS  Google Scholar 

  5. Kakimoto, K, Watanabe, H, Eguchi, M, et al. Ordered Structure in Non-axisymmetrix Flow of Silicon Melt Convection. J. Crystal Growth., 1993, 126: 435–440

    Article  Google Scholar 

  6. Yi, K W, Booker, V B, Eguchi, M, et al. Structure of Temperature and Velocity Fields in the Si Melt of a Czochralski Crystal Growth System. J. Crystal Growth., 1995, 156: 383–392

    Article  Google Scholar 

  7. Kakimoto, K, Eguchi, M, Watabe, H, et al. Natural and Forced Convection of Molten Silicon During Czochralski Single Crystal Growth. J. Crystal Growth., 1989, 94: 412–420

    Article  Google Scholar 

  8. Xiao, O, Derby, J J. Three-dimensional Melt Flows in Czochralski Oxide Growth: High-resolution, Massively Parallel, Finite Element Computations. J. Crystal Growth., 1995, 152: 169–181

    Article  Google Scholar 

  9. Rojo, J C, Derby, J J. On the Formation of Rotational Spoke Patterns During the Czochralski Growth of Bismuth Silicon Oxide. J. Crystal Growth., 1999, 188/189: 154–160

    Google Scholar 

  10. Leister, H J, Peric, M. Numerical Simulation of a 3D Czochralski-melt Flow by Finite Volume Multigrid-algorithm. J. Crystal Growth., 1992, 123: 567–574

    Article  Google Scholar 

  11. Mihelcic, M, Wingerath, K, Pirron, P. Three-dimensional Simulations of the Czochralski Bulk Flow. J. Crystal Growth., 1984, 69: 473–488

    Article  Google Scholar 

  12. Mihelcic, M, Wingerath, K. Three-dimensional Simulations of the Czochralski Bulk Flow in a Stationary Transverse Field and in a Vertical Magnetic Field: Effects on the Asymmetry of the Flow and Temperature Distribution in the Si Melt. J. Crystal Growth., 1987, 82: 318–326

    Article  ADS  Google Scholar 

  13. Mihelcic, M, Wingerath, K. Instability of the Buoyancy Driven Convection in Si-melts During Czochralski Crystal Growth. J. Crystal Growth., 1989, 97: 42–49

    Article  Google Scholar 

  14. Bottaro, A, Zebib, A. Three-dimensional Thermal Convection in Czochralski Melt. J. Crystal Growth., 1989, 97: 50–58

    Article  ADS  Google Scholar 

  15. Enger, S, Basu, B, Breuer, M, et al. Numerical Study of Three-dimensional Mixed Convection Due to Buoyancy and Centrifugal Force in an Oxide Melt for Czochralski Growth. J. Crystal Growth., 2000, 219: 144–164

    Article  Google Scholar 

  16. Jing, C J, Imaishi, N, Sato, T, et al. Three-dimensional Numerical Simulation of Oxide Melt Flow in Czochralski Configuration. J. Crystal Growth., 2000, 216: 372–388

    Article  Google Scholar 

  17. Jing, C J, Imaishi, N, Sato, T, et al. Three-dimensional Numerical Simulation of Spoke Pattern in Oxide Melt. J. Crystal Growth., 1999, 200: 204–212

    Article  Google Scholar 

  18. Jones, A D W. Spoke pattern. J. Crystal Growth., 1983, 63: 70–76

    Article  Google Scholar 

  19. Jones, A D W. An Experimental Model of the Flow in Czochralski Growth. J. Crystal Growth., 1983, 61: 235–244

    Article  Google Scholar 

  20. Jones, A D W. Flow in Model Czochralski Oxide Melt. J. Crystal Growth., 1989, 94: 421–432

    Article  Google Scholar 

  21. Miller, D C, Pernell, T L. The Temperature Distribution in a Simulated Garnet Czochralski Melt. J. Crystal Growth., 1981, 53: 523–529

    Article  Google Scholar 

  22. Miller, D C, Pernell, T L. Fluid Flow Patterns in a Simulated Garnet Melt. J. Crystal Growth., 1982, 53: 253–260

    Article  Google Scholar 

  23. Brandle, C D. Simulation of Fluid Flow in Gd3Ga5O12 Melts. J. Crystal Growth., 1977, 42: 400–404

    Article  Google Scholar 

  24. Whiffin, P A C, Bruton, T M, Brice, J C. Simulated Rotational Instability in Melten Bismuth Silicon Oxide. J. Crystal Growth., 1976, 32: 205–210

    Article  Google Scholar 

  25. Hurle, D T J. Convective Transport in Melt Growth System. J. Crystal Growth., 1983, 65: 124–132

    Article  Google Scholar 

  26. Gaskell, P H, Lau, A K C. Int. Curvature Compensated Convection Transport-SMART, a New Boundedness-preserving Transport Algorithm. J. Numer. Meth. Fluids, 1988, 8: 617

    Article  MATH  MathSciNet  Google Scholar 

  27. Brandon, S. Flow Fields and Interface Shapes During Horizontal Bridgeman Growth of Fluorides. Modelling Simul. Mater. Sci. Eng., 1997, 5: 259

    Article  ADS  Google Scholar 

  28. Fratello, V J, Brandle, C D. Thermophysical Properties of LiCaAlF6 Melt. J. Crystal Growth., 1991, 109: 334

    Article  Google Scholar 

  29. Hintz, P, Schwabe, D. Convection in a Czochralski Crucible- Part 1: Non-rotating Crystal. J. Crystal Growth., 2001, 222: 343–355

    Article  Google Scholar 

  30. Hintz, P, Schwabe, D. Convection in a Czochralski Crucible- Part 2: Rotating Crystal. J. Crystal Growth., 2001, 222: 356–364

    Article  Google Scholar 

  31. Zeng, Z, Mizuseki, H, Kawazoe, Y. Three-Dimensional Oscillatory Convection of LiCaAlF6 Melts in Czochralski Crystal Growth. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Chen, J., Mizuseki, H. et al. Marangoni convection in the LiCaAIF6 crystal growth by the Czochralski technique. J. of Therm. Sci. 11, 348–352 (2002). https://doi.org/10.1007/s11630-002-0048-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-002-0048-7

Keywords

Navigation