Skip to main content
Log in

Heat transfer analysis of an elevated linear absorber with trapezoidal cavity in the linear Fresnel reflector solar concentrator system

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper describes various aspects of the design methodology and heat transfer calculations for an elevated linear absorber. The absorber is a part of the linear Fresnel reflector solar concentrator system, in which hot fluid is generated. The design of the absorber is an inverted trapezoidal air cavity with a glass cover enclosing a multi tube absorber. In a trapezoidal cavity absorber, a set of linear multi tube absorber with plate (named as “plane surface”) and without plate (named as “tube surface”) underneath are considered. An analytical simulation is done for different gaps between the tubes and for different depths of the cavity. A better design of the absorber is found out to maximize the heat transfer rate supplied to the absorber tube fluid. Also, the experimentally obtained overall heat loss coefficients are compared with the analytical values for the considered arrangements of absorber set up and results are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac :

Area of the transparent cover placed at the bottom [m2]

Ap :

Absorber plate area [m2]

Ar :

Absorber tubes surface area [m2]

c:

Specific heat of water [kJ/kgK]

De :

Distance between the absorber surface and transparent cover [mm]

do :

Outer diameter of tubular absorber [m]

di :

Inner diameter of tubular absorber [m]

f:

Height of tubular absorber from the reflector frame [m]

g:

gap between the absorber tubes [mm]

h:

Heat loss coefficient from the absorber surface [W/m2-K]

hco :

Convection heat loss coefficient from the bottom glass surface [W/m2-K]

hcp :

Convection heat loss coefficient from the absorber surface [W/m2-K]

hro :

Radiation heat loss coefficient from the bottom glass surface [W/m2-K]

hrp :

Radiation heat loss coefficient from the absorber surface [W/m2-K]

m:

mass flow rate of the fluid [kg/s]

Nu:

Nusselt number

Ra:

Rayleigh number

Re:

Reynolds Number

Ta :

Ambient temperature [°C]

Tc :

Cover temperature [°C]

Ti :

Fluid inlet temperature [°C)]

To :

Fluid outlet temperature [°C]

Tp :

Absorber plate temperature [°C]

Ts :

Absorber surface temperature [°C]

Ul :

Overall heat loss coefficient [W/m2 °K]

W:

Width of the absorber plane [m]

z:

constant used to find Nusselt number

ɛc :

Emissivity of the cover

ɛp :

Emissivity of the plate

σ:

Stefan Boltzman constant

References

  1. Harry, K., and Charles. J.R. 1983. Solar photovoltaics energy systems. Handbook of Energy Technology and Economics, New York: John Wiley.

    Google Scholar 

  2. Duffie, J.A., and Beckman. W.A. 1983. Solar Engineering of thermal process. New York: John Wiley.

    Google Scholar 

  3. Duran, J.C., and Nicolas. R.O. 1987. Comparative optical analysis of cylindrical parabolic solar concentrator. Applied Optics 26(3): 578–585.

    Article  ADS  Google Scholar 

  4. CHEN Zhenqian, GU Mingwei, PENG Donghua, PENG Changai and WU Zhishen. 2010 A numerical study on heat transfer of high efficient solar flat plate collectors with energy storage, International Journal of Green Energy, 7(3): 326–336.

    Article  Google Scholar 

  5. Mathur, S.S., Negi, B.S. and Kandpal. T.C. 1990. Geometrical designs and performance analysis of a linear Fresnel reflector solar concentrator with flat horizontal absorber. International Journal of Energy Resources 14(1): 107–124.

    Article  Google Scholar 

  6. Negi, B. S., Kandpal, T.C. and Mathur. S. S. 1990. Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber. Solar Wind Technology 7(4): 379–392.

    Article  Google Scholar 

  7. Goswami, R. P., Negi, B.S. Sehgal, H.C. and Sootha. G. D. 1990. Optical design and concentration characteristics of a linear Fresnel reflector solar concentrator with a triangular absorber. Solar Energy Materials 21(2,3): 237–251.

    Article  Google Scholar 

  8. Negi, B. S., and Sehgal. H. K. 1991. Performance characteristics of spray pyrolysed selective cobalt oxide coated tubular absorber operated with a linear solar concentrator. International Journal of Energy Resources 15(9): 715–722.

    Article  Google Scholar 

  9. Singh, P. L., Sarviya, R.M. and Bhagoria. J.L. 2010. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers. Applied Energy 87: 541–550.

    Article  Google Scholar 

  10. Mills, D., and Morrison. G.L. 2000. Compact linear Fresnel reflector solar thermal power plants, Solar Energy 68(3): 263–283.

    Article  ADS  Google Scholar 

  11. Dey, C.J. 2004. Heat transfer aspects of an elevated linear absorber. Solar Energy 76: 243–249.

    Article  ADS  Google Scholar 

  12. http://www.ausra.com〉.

  13. http://www.novatecsolar.com〉.

  14. Jance, M. J., Morrison, G.L. and Behnia. M. 2000. Natural convection and radiation within an enclosed inverted absorber cavity: preliminary experimental results, International renewable energy transforming business: proceedings of solar. Brisbane: ANZSES.

    Google Scholar 

  15. Reynolds, D. J., Jance, M. J. Behnai M. and Morrison. A. 2004. An experimental and computational study of the heat loss characteristics of a trapezoidal cavity absorber. Solar Energy 76: 229–234.

    Article  ADS  Google Scholar 

  16. Manikumar, R., and Valan Arasu. A. 2012. Design and theoretical performance analysis of linear Fresnel reflector solar concentrator with a tubular absorber. International journal of renewable energy and technology 3(3): 221–236.

    Article  Google Scholar 

  17. Kalogirou, S. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science 30: 231–295.

    Article  Google Scholar 

  18. Sukhatme, S.P., and Nayak. J.K. 2009. Solar energy principles of thermal collection and storage. New York: Tata McGraw-Hill Publication.

    Google Scholar 

  19. Singh, P. L., Sarviya, R.M. and Bhagoria. J.L. 2010. Heat loss study of trapezoidal cavity absorbers for linear solar concentration collector, Energy Conversion and Management 51: 329–337.

    Article  Google Scholar 

  20. Kothandaraman, C.P., and Subramanyan, S. 2008. Heat and Mass Transfer Data Book. Delhi: New Age International Publishers.

    Google Scholar 

  21. Pye John, D. 2008. System modelling of the compact linear Fresnel reflector, PhD thesis. University of New South Wales, Sydney, Australia.

    Google Scholar 

  22. Negi, B.S., Mathur S.S. and Kandpal. T.C. 1989. Optical and Thermal Performance Evaluation of a Linear Fresnel Reflector Solar Concentrator, Solar and Wind Technology 6(5): 589–593.

    Article  Google Scholar 

  23. Facao Jorge, and Armando Oliveria. C. 2011. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renewable Energy 36: 90–96.

    Article  Google Scholar 

  24. Manikumar, R., Valan Arasu A. and Jayaraj. S. 2013. Numerical simulation of a trapezoidal cavity absorber in the linear Fresnel reflector solar concentrator system. International Journal of Green Energy http://www.tandfonline.com/loi/ljge20, Article in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikumar, R., Palanichamy, R. & Valan Arasu, A. Heat transfer analysis of an elevated linear absorber with trapezoidal cavity in the linear Fresnel reflector solar concentrator system. J. Therm. Sci. 24, 90–98 (2015). https://doi.org/10.1007/s11630-015-0760-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-015-0760-8

Keywords

Navigation