Skip to main content
Log in

Distribution of algae and cyanobacteria of biological soil crusts along the elevation gradient in mountain plant communities at the Northern Urals (Russian European Northeast)

  • Original Article
  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts (BSC) on bare substrates in different mountain vegetation types at the Northern Urals. In total, we identified 99 algal species from six divisions in all sampled sites. The species diversity and structure of BSC algal communities show a relationship with environmental factors (altitude, soil pH and humidity, and illumination). Taxonomic diversity of algae decreases along the altitude gradient from mountain meadow to mountain tundra. Algae and cyanobacteria species from six divisions were identified in meadow communities, five in mountain forests and four in mountain tundra. We observed a positive correlation between species diversity of phototrophic microorganisms and altitude in the forest communities, but a negative correlation in the tundra. The dominant complex of cyanobacterial and algal species in BSC was specific for each type of plant community and was reflective of the habitat conditions. The species diversity and morphological organization of the BSC algae thalli can be used as a criterion for the ongoing assessment of climatic changes in high latitudes and mountain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksakhina TI, Shtina EA (1984) Soil Algae of Forest Biogeocenoses. Nauka, Moskow. (In Russian)

    Google Scholar 

  • Andersen RA (2005) Algal culturing techniques. Elsevier, New York.

    Google Scholar 

  • Andreeva VM (1998) Soil and aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Nauka, St. Petersburg. (In Russian)

    Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135. https://doi.org/10.1007/s00374-002-0452-x

    Article  Google Scholar 

  • Borchhardt N, Baum C, Mikhailyuk T, Karsten U (2017) Biological soil crusts of Arctic Svalbard — water availability as potential controlling factor for microalgal biodiversity. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.01485

    Article  Google Scholar 

  • Broady PA, Weinsteinz RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarc Sci 10:376–385. https://doi.org/10.1017/S0954102098000467

    Article  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483. https://doi.org/10.1126/science.179.4072.480

    Article  Google Scholar 

  • Colesie C, Green TGA, Raggio J, Büdel B (2016) Summer activity patterns of Antarctic and high alpine lichen-dominated biological soil crusts — similar but different? Arct Antarc Alp Res 48:449–460. https://doi.org/10.1657/AAAR0015-047

    Article  Google Scholar 

  • Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

    Google Scholar 

  • Degteva SV, Dubrovsky YA (2014) Forest Vegetation of the River Basin Ilych within the Boundaries of the Pechora-Ilych Nature Reserve. Nauka, St. Petersburg. (In Russian)

    Google Scholar 

  • Degteva SV, Novakovskii AB (2010) Groups of coupled species in the vegetation cover in the landscapes of the basins of the upper and middle courses of the Pechora River as indicators of Ecotopic and Phytocenotic conditions. Contemporary Problems of Ecology 3:203–209.

    Article  Google Scholar 

  • Devi NM, Kukarskih VV, Galimova AA, et al. (2020) Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains. For Ecosyst 7:7. https://doi.org/10.1186/s40663-020-0216-9

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology — a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Dubrovsky YA, Zhangurov EV, Startsev VV, et al. (2019) Coniferous forests of the southern part of the Yugyd va national park (Komi Republic, basins of the Shchugor and Podcherem rivers). Transactions of the Karelian Scientific Center of the Russian Academy of Sciences 1:22–43. https://doi.org/10.17076/bg883

    Google Scholar 

  • Egorova IN (2006) Epiphytic algoflora of the Baikal region: species diversity and ecological features. Phd thesis. Banzarov Buryat State University, Ulan-Ude. (In Russian)

    Google Scholar 

  • Ellenberg H, Weber HE, Dull R, et al. (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248

    Google Scholar 

  • Elster J, Benson E (2004) Chapter 3. Life in the Polar Terrestrial Environment with a Focus on Algae and Cyanobacteria. In: Fuller JB, Lane N, Benson EE (eds.), Life in a Frozen State Libro. CRC Press, Boca Raton. pp 111–150.

    Chapter  Google Scholar 

  • Erokhina OV, Sokovnina SU (2018) Characteristic of Mountain Tundra Plants Communities with Different Cover of Juniperus Sibirica on Northern and Southern Ural. In: Mukhin VA (ed.), Ecology and Geography of Plants and Plant Communities: Materials IV International Scientific Conference. Humanitarian University, Ekaterinburg. pp 262–264. (In Russia)

    Google Scholar 

  • Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft-und Flechtenalgen, Auflage 2. Springer Spektrum, Berlin, Heidelberg.

    Book  Google Scholar 

  • Fagre DB, Running SW, Keane RE, Peterson DL (2005) Assessing Climate Change Effects on Mountain Ecosystems Using Integrated Models: A Case Study. In: Huber UM, Bugmann HKM, Reasoner MA (eds.), Global Change and Mountain Regions. AGLO, Vol. 23. Springer, Dordrecht. pp 489–500. https://doi.org/10.1007/1-4020-3508-X_49

    Chapter  Google Scholar 

  • Glaser K, Baumann K, Leinweber P, et al. (2017) Algal diversity of temperate biological soil crusts depends on land use intensity and affects phosphorus biogeochemical cycling. Biogeosciences Discuss. https://doi.org/10.5194/bg-2017-365

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448. https://doi.org/10.1038/369448a0

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide Electronic Publication. National University of Ireland, Galway. http://www.algaebase.org, accessed on 10 May 2021

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105. https://doi.org/10.1007/BF02858529

    Article  Google Scholar 

  • Hoffmann L, Luc E, Kostikov I (2007) Algal flora from limed and unlimed forest soils in the Ardenne (Belgium). Syst Geogr Plants 77:15–90. https://doi.org/10.2307/20649729

    Google Scholar 

  • Ipatov VS, Mirin DM (2008) Description of Phythocoenosis. Metodical Recomendations. St. Petersburg State University Press, St.Petersburg. (In Russian)

    Google Scholar 

  • Kan Y, Pan J (2010) A one-shot solution to bacterial and fungal contamination in the green alga Chlamydomonas reinhardtii culture by using an antibiotic cocktail. J Phycol 46:1356–1358. https://doi.org/10.1111/j.1529-8817.2010.00904.x.

    Article  Google Scholar 

  • Karsten U, Holzinger A (2014) Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv 23:1845–1858. https://doi.org/10.1007/s10531-014-0653-2

    Article  Google Scholar 

  • Komárek J (2013) Süßwasserflora von Mitteleuropa. Cyanoprokaryota III: Nostocales, Stigonematales, Bd. 19/3. Springer Spektrum, Berlin.

    Book  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Süßwasserflora von Mitteleuropa. Cyanoprokaryota I: Chroococcales, Bd. 19/1. Springer Spektrum, Heidelberg/Berlin.

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Süßwasserflora von Mitteleuropa. Cyanoprokaryota II: Oscillatoriales, Bd. 19/2. Springer Spektrum, München.

    Google Scholar 

  • Kondratyeva NV, Tsarenko PM (eds.) (2008) Fundamentals of Algosozology. Academicperiodika, Kyiv.

    Google Scholar 

  • Kostikov I, Carnol M, Dulière JF, Hoffmann L (2001) Effects of liming on forest soil algal communities. Algological studies 102:161–178. https://doi.org/10.1127/algol_stud/102/2001/161

    Google Scholar 

  • Lange OL (2001) Photosynthesis of Soil-Crust Biota as Dependent on Environmental Factors. In: Belnap J and Lange OL (eds.), Biol. Soil Crusts Struct. Funct. Manag. Springer, Berlin/Heidelberg. pp 217–240.

    Chapter  Google Scholar 

  • Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor Ecol 9:341–350. https://doi.org/10.1046/j.1526-100X.2001.94002.x

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Velázquez D, et al. (2015) Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers Conserv 24:819–840. https://doi.org/10.1007/s10531-015-0902-z

    Article  Google Scholar 

  • Mikhailyuk TI (2008) Terrestrial lithophilic algae in a granite canyon of the Teteriv River (Ukraine). Biologia, Section Botany 63/6:824–830. https://doi.org/10.2478/s11756-008-0104-1

    Google Scholar 

  • Novakovskaya IV, Dubrovskiy YA, Patova EN, et al. (2020) Influence of ecological factors on soil algae in different types of mountain tundra and sparse forests in the Northern Urals. Phycologia 59:320–329. https://doi.org/10.1080/00318884.2020.1754736

    Article  Google Scholar 

  • Novakovskaya IV, Patova EN (2011) Soil algae of spruce forests and their changes in the conditions of aerotechnogenic pollution. Syktyvkar, Russia. (In Russian)

  • Novakovskaya I, Patova E, Dubrovskiy Y, et al. (2021) The list of cyanobacteria and algae in biological soil crusts of mountain plant communities at the Northern Urals (Russia European Northeast). Mendeley Data V2. https://doi.org/10.17632/g4n4xvs2yk.2

  • Novakovskaya IV, Patova EN, Kulugina EE (2019) Changes of Cyanoprokariota and algae diversity during the overgrowing of bare spots in the mountain tundra communities of the Northern Urals. Botanicheskii Zhurnal 104:69–86. https://doi.org/10.1134/S0006813619040057

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, et al. (2020) Vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan

  • Palomo I (2017) Climate change impacts on ecosystem services in high mountain areas: a literature review. Mt Res Dev 37: 179–187. https://doi.org/10.1659/MRD-JOURNAL-D-16-00110.1

    Article  Google Scholar 

  • Patil A, Mutum L (2018) Impact of climate change on soil health: A review. Int J Chem Stud 6:2399–2404.

    Google Scholar 

  • Patova EN, Novakovskaya IV, Deneva SV (2018) Influence of edaphic and orographic factors on the diversity of algae communities of biological soil crusts on medallion spots of the Polar and Subpolar Urals. Eurasian Soil Sci 3:318–330. https://doi.org/10.7868/S0032180X18030061

    Google Scholar 

  • Patova E, Sivkov M, Patova A (2016) Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the subpolar Urals (European North-East Russia). FEMS Microbiol Ecol 9:1–9. https://doi.org/10.1093/femsec/fiw131

    Google Scholar 

  • Pietryka M, Richter D, Matuła J (2018) Arctic ecosystems — relations between cyanobacterial assemblages and vegetation (Spitsbergen). Ecol Questions 29:9–20. https://doi.org/10.12775/EQ.2018.001

    Article  Google Scholar 

  • Pushkareva E, Johansen JR, Elster J (2016) A review of the ecology, ecophysiology, and biodiversity of microalgae in Arctic soil crusts. Polar Biology 39:2227–2240. https://doi.org/10.1007/s00300-016-1902-5

    Article  Google Scholar 

  • Řeháková K, Chlumská Z, Doležal J (2011) Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol 62:337–346. https://doi.org/10.1007/s00248-011-9878-8

    Article  Google Scholar 

  • Richter D, Pietryka M, Matuła J (2015) Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago). Polish Polar Research 36:239–260. https://doi.org/10.1515/popore-2015-0013

    Article  Google Scholar 

  • Rogora M, Frate L, Carranza ML, et al. (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci Total Environ 624:1429–1442. https://doi.org/10.1016/j.scitotenv.2017.12.155

    Article  Google Scholar 

  • Schaub I, Baum C, Schumann R, Karsten U (2019) Effects of an Early Successional Biological Soil Crust from a Temperate Coastal Sand Dune (NE Germany) on Soil Elemental Stoichiometry and Phosphatase Activity. Microb Ecol 77:217–229. https://doi.org/10.1007/s00248-018-1220-2

    Article  Google Scholar 

  • Schmidt SK, Lynch RC, King AJ, et al. (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proceedings of the Royal Society 278:702–708. https://doi.org/10.1098/rspb.2010.1254

    Google Scholar 

  • Schulz K, Mikhailyuk T, Dreßler M, et al. (2016) Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microb Ecol 71:178–193. https://doi.org/10.1007/s00248-015-0691-7

    Article  Google Scholar 

  • Shtina EA, Hollerbach MM (1976) Ecology of Soil Algae. Nauka, Moscow. (In Russian)

    Google Scholar 

  • Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photoch Photobio Sci 1:225–236. https://doi.org/10.1039/b201230h

    Article  Google Scholar 

  • Sizonenko TA, Dubrovskiy YA, Novakovskiy AB (2020) Changes in mycorrhizal status and type in plant communities along altitudinal and ecological gradients — a case study from the Northern Urals (Russia). Mycorrhiza 30:445–454. https://doi.org/10.1007/s00572-020-00961-z

    Article  Google Scholar 

  • Škaloud P, Rindi F, Boedeker C, Leliaert F (2018) Süßwasserflora von Mitteleuropa. Freshwater Flora of Central Europe. Chlorophyta: Ulvophyceae, Bd. 13. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55495-1

    Google Scholar 

  • Startsev VV, Zhangurov EV, Dymov AA (2016) The annual temperature dynamics of soil organogenic horizons of the Subpolar Urals. Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences 2:28–35. (In Russian)

    Google Scholar 

  • Stewart KJ, Lamb EG, Coxson DS, Siciliano SD (2011) Bryophyte cyanobacterial associations as key factor in N2-fixation across the Canadian Arctic. Plant Soil 344:335–346. https://doi.org/10.1007/s11104-011-0750-x

    Article  Google Scholar 

  • Stewart A, Rioux D, Boyer F, et al. (2021) Altitudinal Zonation of Green Algae Biodiversity in the French Alps. Front Plant Sci 12:679428. https://doi.org/10.3389/fpls.2021.679428

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of Education and Science of the Russian Federation project No. 1021051101424-8-1.6.11;1.6.19;1.6.20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Novakovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novakovskaya, I.V., Patova, E.N., Dubrovskiy, Y.A. et al. Distribution of algae and cyanobacteria of biological soil crusts along the elevation gradient in mountain plant communities at the Northern Urals (Russian European Northeast). J. Mt. Sci. 19, 637–646 (2022). https://doi.org/10.1007/s11629-021-6952-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-021-6952-7

Keywords

Navigation