Skip to main content
Log in

Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

High-speed landslide is a catastrophic geological disaster in the mountainous area of southwest China. To predict the movement process of landslide reactivation in Chenjiaba town, Beichuan county, Sichuan province, China, we simulated the movement process of two landslide failures in Chenjiaba via rapid mass movement simulation and unmanned aerial vehicle images (UAV), and obtained the movement characteristic parameters of the landslides. According to a back analysis, the most remarkable fitting rheological parameters were friction coefficient (μ = 0. 18) and turbulence (ξ = 400 m · s-2). The parameter of landslide pressure was applied as the zoning index of landslide hazard to obtain the influence zone and hazard zoning map of the Chenjiaba landslide. Results show that the Duba River was blocked quickly with a landslide accumulation at the maximum height of 44.14 m when the Chenjiaba deposits lost stability. The hazard zoning map indicated that the landslide hazard degree is positively correlated with the slope. This landslide assessment is a quantitative hazard assessment method based on a landslide movement process and is suitable for high-speed landslide. Such method can provide a scientific basis for urban construction and planning in the landslide hazard area to avoid hazards effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen SK, Schneider D, Owens IF (2009) First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps. Natural Hazards and Earth System Sciences 9(2): 481–499. https://doi.org/10.5194/ nhess-9-481-2009

    Article  Google Scholar 

  • Bühler Y, Christen M, Kowalski J, et al. (2011) Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Annals of Glaciology 52(58): 72–80. https:// doi.org/10.3189/172756411797252121

    Article  Google Scholar 

  • Bühler Y, Hüni A, Christen M, et al. (2009) Automated detection and mapping of avalanche deposits using airborne optical remote sensing data. Cold Regions Science and Technology 57(2): 99–106. https://doi.org/10.1016/j. coldregions.2009.02.007

    Article  Google Scholar 

  • Casteller A, Christen M, Villalba R, et al. (2008) Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia. Argentina. Natural Hazards and Earth System Sciences 8(3): 433–443. https://doi.org/10.5194/nhess-8-433-2008

    Article  Google Scholar 

  • Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake. Journal of Geophysical Research Earth Surface 114(F4): 171–183. https://doi.org/10.1029/ 2008JF001075

    Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology 63(1-2):1–14. https://doi.org/10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Engineering Geology 64(1): 65–87.https://doi.org/10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • Ding MT, Tian SJ (2013) Landslide Debris Flow Risk Assessment and Application. Science Press, Beijing, China, pp 12–13. (in Chinese)

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, et al. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology 102(3): 85–98. https://doi. org/10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk management Landslide risk assessment Balkema, Rotterdam: 51–109

    Google Scholar 

  • Fischer J-T, Kowalski J, Pudasaini SP (2012) Topographic curvature effects in applied avalanche modeling. Cold Regions Science and Technology 74-75(s74-75): 21–30. https://doi.org/10.1016/j.coldregions.2012.01.005

    Article  Google Scholar 

  • Graf C, Mcardell BW (2011) Debris-flow monitoring and debrisflow runout modelling before and after construction of mitigation measures: an example from an instable zone in the Southern Swiss Alps. In: Lambiel C, Reynard E, Scapozza C (eds) La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie, 3–5 septembre 2009, Olivone. Géovisions 36. Université, Institut de géographie, Lausanne, pp 243–258.

  • Hungr O, Fell R, Couture R, et al. (2005) Landslide risk management. Taylor & Francis, London, p 763.

    Google Scholar 

  • Hungr O, Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32(4): 610–623. https://doi.org/ 10.1139/t95-063

    Article  Google Scholar 

  • Hu KH, Wei FQ (2005) Numerical-simulation-based debris flow risk zoning. Journal of Natural Disasters 14: 10–14. (In Chinese)

    Google Scholar 

  • Jakob DM, Hungr O (2005) Debris-flow Hazards and Related Phenomena. Springer, Berlin Heidelberg, Germany.

    Google Scholar 

  • Kowalski, J (2008) Two-phase Modeling of debris flows. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  • Leroi, E (1996) Landslide hazard - Risk maps at different scales: Objectives, tools and developments, In K. Senneset (ed.), Landslides. Balkema, Rotterdam, pp 35–51.

  • Luna BQ (2007) Assessment and modelling of two lahars caused by" Hurricane Stan" at Atitlan, Guatemala, October 2005. MSc. thesis, University of Oslo, Oslo, Norway.

    Google Scholar 

  • Mcdougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal 41(6): 1084–1097. https://doi.org/10.1139/t04-052

    Article  Google Scholar 

  • O'Brien JS, Julien PY, Fullerton WT (1993) Two-Dimensional Water Flood and Mudflow Simulation Journal of Hydraulic Engineering 119(2): 244–261. https://doi.org/10.1061/ (ASCE)0733-9429(1993)119:2(244)

    Google Scholar 

  • Poisel R, Preh A (2008) 3D landslide run out modelling using the Particle Flow Code PFC3D. https://doi.org/10.1201/9780203885284-c110

    Book  Google Scholar 

  • Sassa K (1989) Special lecture: geotechnical model for the motion of landslides: Proc 5th International Symposium on Landslides, Lausanne, 10–15 July 1988V1, P37–55. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 26(2):88.https://doi.org/10.1016/0148-9062(89)90311-2

    Article  Google Scholar 

  • Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model Journal of Geophysical Research: Earth Surface 115(F4): 137–139. https://doi.org/10.1029/2010JF001734

    Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2012) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9(3): 315–334. https://doi.org/ 10.1007/s10346-011-0302-8

    Article  Google Scholar 

  • Taboada A, Estrada N (2009) Rock-and-soil avalanches: Theory and simulation. Journal of Geophysical Research, American Geophysical Union 114 pp. F03004. https://doi.org/10.1007/ s10.1029/2008JF001072

    Google Scholar 

  • Tommasi P, Campedel P, Consorti C, et al. (2008) A discontinuous approach to the numerical modelling of rock avalanches. Rock Mechanics and Rock Engineering 41(1): 37–58. https://doi.org/10.1007/s00603-007-0133-z

    Article  Google Scholar 

  • Wang SN, Xu WY, Shi C, et al. (2017) Run-out prediction and failure mechanism analysis of the Zhenggang deposit in southwestern China. Landslides 14(2): 719–726. https://doi.org/10.1007/s10346-016-0770-y

    Article  Google Scholar 

  • Wang YT, Seijmonsbergen AC, Bouten W, et al. (2015) Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science 12(2): 268–288. https://doi.org/10.1007/s11629-014-3134-x

    Article  Google Scholar 

  • Wang Y, Li X, Wang SX, et al. (2012) PFC Simulation of Progressive Failure Process of Landslide. Journal of Yangtze River Scientific Research Institute 29: 46–52 (In Chinese)

    Google Scholar 

  • Xie NM, Xin JH, Liu SF (2014) China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model. Natural Hazards 71(2): 1067–1089. https://doi. org/10.1007/s11069-013-0662-6

    Article  Google Scholar 

  • Xu, C, Xu X, Yao X, et al. (2014). Three (nearly) complete inventories of landslides triggered by the may 12, 2008 Wenchuan mw 7.9 earthquake of china and their spatial distribution statistical analysis. Landslides 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6

    Article  Google Scholar 

  • Yin YP (2009a) Features of landslides triggered by the Wenchuan Earthquake. Journal of Engineering Geology 17: 29–38. (In Chinese)

    Google Scholar 

  • Yin YP (2009b) Rapid and Long Run-out Features of Landslides Triggered by The Wenchuan Earthquake. Journal of Engineering Geology 17(2): 153–166. (In Chinese)

    Google Scholar 

  • Zhu SB, Shi YL, Lu M, et, al. (2013) Dynamic mechanisms of earthquake-triggered landslides. Science China (Earth Sciences) 56(10): 1769–1779. https://doi.org/10.1007/s11430-013-4582-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-tao Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Ding, Mt., She, T. et al. Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China. J. Mt. Sci. 14, 2137–2149 (2017). https://doi.org/10.1007/s11629-017-4516-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-017-4516-7

Keywords

Navigation