Skip to main content
Log in

Variations in leaf functional traits and physiological characteristics of Abies georgei var. smithii along the altitude gradient in the Southeastern Tibetan Plateau

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Variations in leaf functional traits of Abies georgei var. smithii at 3700, 3900, 4100, 4300, and 4390 m altitude were investigated in 15 typical plots in the Southeastern Tibetan Plateau. In each plot, three seedlings were selected, of which functional leaves in current-year sunny branches were chosen for the measurement of morphological, photosynthetic, and physiological and biochemical characteristics, and their variations were analyzed. Results showed that significant variations existed among the leaf functional traits of A. georgei var. smithii along the altitudinal gradient, as well as their physiological adaption indicators. Leaf area decreased, while the mass per area and thickness of leaf increased at an altitude above 4,100 m. The maxima of pigment, total nitrogen concentration, net photosynthesis rate during light-saturated, and when water use efficiency appeared at 4100 m altitude. In addition, A. georgei var. smithii seedlings regulated the activities of superoxide dismutase and ascorbate peroxidase to resist abiotic stress under 4100 m altitude. Meanwhile, malondialdehyde concentration and the dark respiration rate rapidly increased, which indicates that A. georgei var. smithii seedlings suffered from heavy abiotic stress from 4100 m to 4390 m altitude. Basing on variations in leaf functional traits along the altitude gradient, we inferred that 4100 m altitude was the suitable region for A. georgei var. smithii growth in the Sygera Mountain. Moreover, the harsh environment was the main limiting factor for A. georgei var. smithii population expansion to high altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berli FJ, Alonso R, Bressan-Smith R, et al. (2013) UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiologia Plantarum 149(1): 127–140. DOI: 10.1111/ppl.12012

    Article  Google Scholar 

  • Bernal M, Llorens L, Julkunen-Tiitto R, et al. (2013) Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles. Plant Physiology and Biochemistry 70: 471–482. DOI: 10.1016/j.plaphy.2013.06.012

    Article  Google Scholar 

  • Blanchfield AL, Robinson SA, Renzullo LJ, et al. (2006) Phylloxera-infested grapevines have reduced chlorophyll and increased photoprotective pigment content—can leaf pigment composition aid pest detection? Functional Plant Biology 33(5): 507–514. DOI: 10.1071/FP05315

  • Cai Z, Jiao D, Tang S, et al. (2012) Leaf photosynthesis, growth, and seed chemicals of Sacha Inchi plants cultivated along an altitude gradient. Crop Science 52(4): 1859–1867. DOI: 10.2135/cropsci2011.10.0571

    Article  Google Scholar 

  • Cordell S, Goldstein G, Meinzer F, et al. (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and d13C along an altitudinal gradient. Functional Ecology 13(6): 811–818. DOI: 10.1046/j.1365-2435.1999.00381.x

    Article  Google Scholar 

  • Cordell S, Goldstein G, Mueller-Dombois D, et al. (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113(2): 188–196. DOI: 10.1007/s004420050367

    Article  Google Scholar 

  • Craine J, Lee W (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134(4): 471–478. DOI: 10.1007/s00442-002-1155-6

    Article  Google Scholar 

  • Dogra V, Ahuja PS, Sreenivasulu Y (2013) Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. Journal of Proteomics 78: 26–38. DOI: 10.1016/j.jprot.2012.10.025

    Article  Google Scholar 

  • Draper H, Squires E, Mahmoodi H, et al. (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radical Biology and Medicine 15(4): 353–363. DOI: 10.1016/0891-5849(93)90035-S

    Article  Google Scholar 

  • Duan B, Lu Y, Yin C, et al. (2005) Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiologia Plantarum 124(4): 476–484. DOI: 10.1111/j.1399-3054.2005.00535.x

    Article  Google Scholar 

  • Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs 73(1): 69–86. DOI: 10.1890/0012-9615(2003)073

    Article  Google Scholar 

  • Friend A, Woodward F (1990) Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research 20: 59–124.

    Article  Google Scholar 

  • Genet M, Li M, Luo T, et al. (2011) Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Annals of botany 107(2): 311–320. DOI: 10.1093/aob/mcq237

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant physiology 59(2): 309–314. DOI: 10.1104/pp.59.2.309

    Google Scholar 

  • Gitelson AA, Gritz Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology 160(3): 271–282. DOI: 10.1078/0176-1617-00887

    Article  Google Scholar 

  • Grahame JW, Wilding CS, Butlin RK (2006) Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60(2): 268–278. DOI: 10.1111/j.0014-3820.2006.tb01105.x

    Article  Google Scholar 

  • Gratani L, Catoni R, Pirone G, et al. (2012) Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. Photosynthetica, 50(1): 15–23. DOI: 10.1007/s11099-012-0006-x

    Article  Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, et al. (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology 101(1): 47–57. DOI: 10.1111/1365-2745.12014

    Article  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist 159(3): 294–304. DOI: 10.1086/338542

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecology letters 8(9): 993–1009. DOI: 10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guo QQ, Zhang WH (2015) Sap flow of Abies georgei var. smithii and its relationship with the environment factors in the Tibetan subalpine region, China. Journal of Mountain Science 12(6): 1373–1382. DOI: 10.1007/s11629-015-3618-3

    Google Scholar 

  • Hölscher D, Schmitt S, Kupfer K (2002) Growth and leaf traits of four broad-leaved tree species along a hillside gradient. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch 121(5): 229–239. DOI: 10.1046/j.1439-0337.2002.02031.x

    Article  Google Scholar 

  • Haboudane D, Miller JR, Tremblay N, et al. (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment 81(2): 416–426. DOI: 10.1016/S0034-4257(02)00018-4

    Article  Google Scholar 

  • Harmutk L (1987) Chlorophyls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzimology 148 (34): 350–382.

    Google Scholar 

  • He JS, Wang Z, WangX, et al. (2006) A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist 170(4): 835–848. DOI: 10.1111/j.1469-8137.2006.01704.x

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, et al. (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Global change biology 12(3): 450–455. DOI: 10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  • Hu QP, Guo ZH, Li CY, et al (2008) Advance at phenotypic plasticity in plant responses to a biotic factors. Scientia Silvae Sinicae 44(5): 136–142. (In Chinese)

    Google Scholar 

  • Hultine K, Marshall J (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123(1): 32–40. DOI: 10.1007/s004420050986

    Article  Google Scholar 

  • Korner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology 179–194. DOI: 10.2307/2389420

    Google Scholar 

  • Li X, Liang E, Gricar J, et al. (2012) Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology tps 113. DOI: 10.1093/treephys/tps113

    Google Scholar 

  • Liang E, Wang Y, Eckstein D, et al. (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist 190(3): 760–769. DOI: 10.1111/j.1469-8137.2010.03623.x

    Article  Google Scholar 

  • Liang E, Wang Y, Xu Y, et al. (2010) Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24(2): 363–373. DOI: 10.1007/s00468-009-0406-0

    Google Scholar 

  • Lu Y, Duan B, Zhang X, et al. (2009) Differences in growth and physiological traits of Populus cathayana populations as affected by enhanced UV-B radiation and exogenous ABA. Environmental and experimental botany 66(1): 100–109. DOI: 10.1016/j.envexpbot.2008.12.006

    Article  Google Scholar 

  • Luo T, Brown S, Pan Y, et al. (2005) Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. Forest Ecology and Management 206(1): 349–363. DOI: 10.1016/j.foreco.2004.11.016

    Article  Google Scholar 

  • Ma L, Sun X, Kong X, et al. (2015) Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. Journal of Proteomics 112(0): 63–82. DOI: 10.1016/j.jprot.2014.08.009

    Article  Google Scholar 

  • Ni J, Herzschuh U (2011) Simulating biome distribution on the Tibetan Plateau using a modified global vegetation model. Arctic, Antarctic, and Alpine Research 429–441. DOI: 10.1657/1938-4246-43.3.429

    Google Scholar 

  • Oleksyn J, Modrzýnski J, Tjoelker M, et al. (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology 12(4): 573–590. DOI: 10.1046/j.1365-2435.1998.00236.x

    Article  Google Scholar 

  • Osone Y, Tateno M (2005) Nitrogen absorption by roots as a cause of interspecific variations in leaf nitrogen concentration and photosynthetic capacity. Functional Ecology 19(3): 460–470. DOI: 10.1111/j.1365-2435.2005.00970.x

    Article  Google Scholar 

  • Pellissier L, Espíndola A, Pradervand JN, et al. (2013) A probabilistic approach to niche-based community models for spatial forecasts of assemblage properties and their uncertainties. Journal of Biogeography 40(10): 1939–1946. DOI: 10.1111/jbi.12140

    Google Scholar 

  • Polle A, Mossnang M, Schonborn A, et al. (1992) Field studies on Norway spruce trees at high altitudes. I. Mineral, pigment and soluble protein contents of needles as affected by climate and pollution. New phytologist 89–99. DOI:10.1111/j.1469-8137.1992.tb01096.x

    Google Scholar 

  • Polle A, Rennenberg H (1992) Field studies on Norway spruce trees at high altitudes: II. Defence systems against oxidative stress in needles. New Phytologist 635–642. DOI: 10.1111/j.1469-8137.1992.tb01134.x

    Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, et al. (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182(3): 565–588. DOI: 10.1111/j.1469-8137.2009.02830.x

    Article  Google Scholar 

  • Reinhardt K, Castanha C, Germino MJ, et al. (2011) Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree physiology tpr 055. DOI: 10.1093/treephys/tpr055

    Google Scholar 

  • Schleuss PM, Heitkamp F, Sun Y, et al. (2015) Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau: localization by 15N labeling and implications for a vulnerable ecosystem. Ecosystems 1–12.DOI:10.1007/s10021-015-9874-9

    Google Scholar 

  • Schmidt S, Reed SC, Nemergut DR, et al. (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proceedings of the Royal Society of London B: Biological Sciences 275(1653): 2793–2802. DOI: 10.1098/rspb.2008. 0808

    Article  Google Scholar 

  • Shabala SN, Shabala SI, Martynenko AI, et al. (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Functional Plant Biology 25(5): 609–616. DOI:10.1071/PP97146

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces 45(1): 7–13. DOI: 10.1016/j.colsurfb.2005.06.016

    Article  Google Scholar 

  • Shi Z, Liu S, Liu X, Centritto M (2006) Altitudinal variation in photosynthetic capacity, diffusional conductance and d13C of butterfly bush (Buddleja davidii) plants growing at high elevations. Physiologia Plantarum 128(4): 722–731. DOI: 10.1111/j.1399-3054.2006.00805.x

    Article  Google Scholar 

  • Sun S, Jin D, Shi P (2006) The leaf size–twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany 97(1): 97–107. DOI: 10.1093/aob/mcj004

    Article  Google Scholar 

  • Thomas J, Oerther G (1972) Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal 64(1): 11–13. DOI:10.2134/agronj1972.000219620064 00010004x

    Article  Google Scholar 

  • Thornley F, Kennedy N, Nelmes R (1976) Structural studies of boracites.IV. Thermal motion in cubic Ni3B7O13I at 77K. Journal of Physics C: Solid State Physics 9(5): 681. DOI: 10.1088/0022-3719/9/5/010

    Article  Google Scholar 

  • Wang D, Heckathorn SA, Wang X, et al. (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169(1): 1–13. DOI: 10.1007/s00442-011-2172-0

    Article  Google Scholar 

  • Wang JT, Zheng YM, Hu HW, et al. (2015) Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments 15(5): 1224–1232. DOI: 10.1007/s11368-015-1070-1

    Article  Google Scholar 

  • Wang S, Wang C, Duan J, et al. (2014) Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan plateau. Agricultural and Forest Meteorology 189-190(0): 220–228. DOI: 10.1016/j.agrformet.2014.01.021

    Article  Google Scholar 

  • Westbeek MH, Pons TL, Cambridge ML, et al. (1999) Analysis of differences in photosynthetic nitrogen use efficiency of alpine and lowland Poa species. Oecologia 120(1): 19–26. DOI: 10.1007/s004420050828

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, et al. (2004) The worldwide leaf economics spectrum. Nature 428(6985): 821–827. DOI:10.1038/nature02403

    Article  Google Scholar 

  • Xu X, Yang F, Xiao X, et al. (2008) Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant, Cell & Environment 31(6): 850–860. DOI: 10.1111/j.1365-3040.2008.01799.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-qiang Guo.

Additional information

http://orcid.org/0000-0002-9915-547X

http://orcid.org/0000-0002-3870-4893

http://orcid.org/0000-0001-9673-1999

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Qq., Li, He. & Zhang, Wh. Variations in leaf functional traits and physiological characteristics of Abies georgei var. smithii along the altitude gradient in the Southeastern Tibetan Plateau. J. Mt. Sci. 13, 1818–1828 (2016). https://doi.org/10.1007/s11629-015-3715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3715-3

Keywords

Navigation