Skip to main content
Log in

Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines

  • Original Papers
  • Published:
Photosynthetica

Abstract

Global climate change may act as a potent agent of natural selection within species with Mediterranean mountain ecosystems being particularly vulnerable. The aim of this research was to analyze whether the phenotypic plasticity of Sesleria nitida Ten. could be indicative of its future adaptive capability to global warming. Morphological, anatomical, and physiological leaf traits of two populations of S. nitida growing at different altitudes on Mount Terminillo (Italy) were analyzed. The results showed that leaf mass per unit leaf area, leaf tissue density, and total leaf thickness were 19, 3, and 31% higher in leaves from the population growing at 1,895 m a.s.l. (B site) than in leaves from the population growing at 1,100 m a.s.l. (A site), respectively. Net photosynthetic rate (P N) and respiration rate (R D) peaked in June in both A and B leaves [9.4 ± 1.3 μmol(CO2) m−2 s−1 and 2.9 ± 0.9 μmol(CO2) m−2 s−1, respectively] when mean air temperature was 16 ± 2°C. R D/P N was higher in B than in A leaves (0.35 ± 0.07 and 0.21 ± 0.03, respectively, mean of the study period). The mean plasticity index (PI = 0.24, mean of morphological, anatomical, and physiological leaf traits) reflected S. nitida adaptability to the environmental stress conditions at different altitudes on Mount Terminillo. Moreover, the leaf key traits of the two populations can be used to monitor wild populations over a long term in response to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A site:

1,100 m a.s.l.

B site:

1,895 m a.s.l.

C:

soil organic carbon content

CD:

mesophyll cell density

DM:

dry mass

DXV:

diameter of the xylematic vessels

E :

transpiration rate

ETab :

abaxial epidermis thickness

ETad :

adaxial epidermis thickness

g s :

stomatal conductance

HCB:

height of the central vascular bundle

HLB:

height of the major lateral vascular bundle

LA:

leaf area

LMA:

leaf mass per unit leaf area

LT:

total leaf thickness

LTD:

leaf tissue density

LW:

leaf width

N:

total soil nitrogen content

PI:

mean plasticity index

PIa :

anatomical plasticity index

PIm :

morphological plasticity index

PIp :

physiological plasticity index

P N :

net photosynthetic rate

R D :

respiration rate

RH:

relative air humidity

SAIab :

abaxial stomatal area index

SAIad :

adaxial stomatal area index

SBC:

total surface area of bulliform cells

SDab :

abaxial stomatal cell density

SDad :

adaxial stomatal cell density

SLab :

abaxial stomatal length

SLab :

adaxial stomatal length

SOM:

soil organic matter content

SWC:

soil water content

T :

air temperature

T l :

leaf temperature

T m :

mean air temperature

T max :

mean maximum air temperature

T min :

mean minimum air temperature

UST:

thickness of the upper sclerenchyma layers

WCB:

width of central vascular bundle

WLB:

width of the major lateral vascular bundle

References

  • Aitken, S.N., Yeaman, S., Holliday, J.A. et al.: Adaptation, migration or extirpation: climate change outcomes for tree populations. — Evol. Appl. 1: 95–111, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Allard, G., Nelson, C.J., Pallardy, S.G.: Shade effects on growth of tall fescue: I. Leaf anatomy and dry matter partitioning. — Crop Sci. 31: 163–167, 1991.

    Article  Google Scholar 

  • Aryal, B., Neuner, G.: Leaf wettability decreases along an extreme altitudinal gradient. — Oecologia 162: 1–9, 2010.

    Article  PubMed  Google Scholar 

  • Ashton, P.M.S., Berlyn, G.P.: A comparison of leaf physiology and anatomy of Quercus (Section Erythrobalanus-Fagaceae) species in different light environments. — Am. J. Bot. 81: 589–597, 1994.

    Article  Google Scholar 

  • Atkin, O.K., Edwards, E.J., Loveys, B.R.: Response of root respiration to changes in temperature and its relevance to global warming. — New Phytol. 147: 141–154, 2000.

    Article  CAS  Google Scholar 

  • Atkin, O.K., Evans, J.R., Siebke, K.: Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. — Aust. J. Plant Physiol. 25: 437–443, 1998.

    Article  Google Scholar 

  • Bazzaz, F.A.: Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Pp. 320. Cambridge University Press, Cambridge 1996.

    Google Scholar 

  • Benito, B., Lorite, J., Peñas, J.: Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. — Climatic Change 108: 471–483, 2011.

    Article  Google Scholar 

  • Breshears, D.D., Myers, O.B., Meyer, C.W. et al.: Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. — Front. Ecol. Environ. 7: 185–189, 2009.

    Article  Google Scholar 

  • Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: a Practical Information — Theoretic Approach. 2nd Ed. Pp. 488. Springer, New York 2002.

    Google Scholar 

  • Byars, S.G., Papst, W., Hoffmann, A.A.: Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. — Evolution 61: 2925–2941, 2007.

    Article  PubMed  Google Scholar 

  • Calcagno, V., de Mazancourt, C.: glmulti: an R package for easy automated model selection with (generalized) linear models. — J. Stat. Softw. 34: 1–29, 2010.

    Article  Google Scholar 

  • Cavaleri, M.A., Oberbauer, S.F., Ryan, M.G.: Foliar and ecosystem respiration in an old-growth tropical rain forest. — Plant Cell Environ. 31: 473–483, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cavieres, L.A., Badano, E.I., Sierra-Almeida, A. et al.: Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. — New Phytol. 169: 59–69, 2006.

    Article  PubMed  Google Scholar 

  • Chapin, F.S., Autumn, K., Pugnaire, F.: Evolution of suites of traits in response to environmental stress. — Am. Nat. 142: S78–S92, 1993.

    Article  Google Scholar 

  • Deyl, M.: Study of the Genus Sesleria. Pp. 256. Československá botanická společnost, Praha 1946.

    Google Scholar 

  • Diaz, H.F., Grosjean, M., Graumlich, L.: Climate variability and change in high elevation regions: past, present and future. — Climatic Change 59: 1–4, 2003.

    Article  Google Scholar 

  • Di Pietro, R.: Taxonomic features of Sesleria calabrica (Poaceae), a neglected species from southern Italy. — Folia Geobot. 42: 289–313, 2007.

    Article  Google Scholar 

  • Dixon, J.M.: Drought resistance in Sesleria albicans Kit. ex Schultes, compared with Agrostis capillaris L. and Cynosurus cristatus L. — New Phytol. 103: 559–572, 1986.

    Article  Google Scholar 

  • Doyle, J.J., Flagel, L.E., Paterson, A.H. et al.: Evolutionary genetics of genome merger and doubling in plants. — Annu. Rev. Genet. 42: 443–461, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Engler, R., Randin, C.F., Thuiller, W. et al.: 21st century climate change threatens mountain flora unequally across Europe. — Glob. Change Biol. 17: 2330–2341, 2011.

    Article  Google Scholar 

  • Franks, S.J., Sim, S., Weis, A.E.: Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. — P. Natl. Acad Sci. USA 104: 1278–1282, 2007.

    Article  CAS  Google Scholar 

  • Frei, E., Bodin, J., Walther, G.: Plant species’ range shifts in mountainous areas — all uphill from here? — Bot. Helv. 120: 117–128, 2010.

    Article  Google Scholar 

  • Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J.: Response of leaf respiration to water stress in Mediterranean species with different growth forms. — J. Arid Environ. 68: 206–222, 2007.

    Article  Google Scholar 

  • González, A.V., Gianoli, E.: Morphological plasticity in response to shading in three Convolvulus species of different ecological breadth. — Acta Oecol. 26: 185–190, 2004.

    Article  Google Scholar 

  • Gratani, L., Catoni, R., Pirone, G. et al.: Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. — Photosynthetica 50: 15–23, 2012.

    Article  Google Scholar 

  • Gratani, L., Meneghini, M., Pesoli, P., Crescente, M.F.: Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. — Trees-Struct. Funct. 17: 515–521, 2003.

    Article  Google Scholar 

  • Gratani, L., Varone, L.: Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. — Photosynthetica 42: 551–558, 2004.

    Article  Google Scholar 

  • Gremer, J.R., Kimball, S., Angert, A.L., Venable, D.L., Huxman, T.E.: Variation in photosynthetic response to temperature in a guild of winter annual plants. — Ecology 93: 2693–2704, 2012.

    Article  PubMed  Google Scholar 

  • Hovenden, M.J., Vander Schoor, J.K.: Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). — New Phytol. 161: 585–594, 2004.

    Article  Google Scholar 

  • Jump, A.S., Peñuelas, J.: Running to stand still: adaptation and the response of plants to rapid climate change. — Ecol. Lett. 8: 1010–1020, 2005.

    Article  Google Scholar 

  • Kahmen, S., Poschlod, P.: Effects of grassland management on plant functional trait composition. — Agr. Ecosyst. Environ. 128: 137–145, 2008.

    Article  Google Scholar 

  • Körner, C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Pp. 339. Springer, Berlin 1999.

    Book  Google Scholar 

  • Kuzmanović, N., Šinžar-Sekulić, J., Lakušic, D.: Leaf anatomy of the Sesleria rigida Heuffel ex Reichenb. (Poaceae) in Serbia. — Bot. Serbica 33: 51–67, 2009.

    Google Scholar 

  • Lenoir, J., Gégout, J.C., Marquet, P.A. et al.: A significant upward shift in plant species optimum elevation during the 20th century. — Science 320: 1768–1771, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Liang, J.Y., Xia, J.Y., Liu, L.L., Wan, S.Q.: Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. — J. Plant Ecol. 6: 437–447, 2013.

    Article  Google Scholar 

  • Lionello, P., Malanotte-Rizzoli, P., Boscolo, R. et al.: The Mediterranean climate: an overview of the main characteristics and issues. — In: Lionello, P., Malanotte-Rizzoli, P., Boscolo, R. (ed.): Mediterranean Climate Variability. Pp. 1–26. Elsevier, Amsterdam 2006.

    Google Scholar 

  • Lloyd, N.D.H., Woolhouse, H.W.: Leaf resistances in different populations of Sesleria caerulea (L.) Ard. — New Phytol. 80: 79–85, 1978.

    Article  Google Scholar 

  • Loveys, B.R., Scheurwater, I., Pons, T.L., Fitter, A.H., Atkin, O.K.: Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast-and slow-growing plant species. — Plant Cell Environ. 25: 975–987, 2002.

    Article  Google Scholar 

  • Matesanz, S., Gianoli, E., Valladares, F.: Global change and the evolution of phenotypic plasticity in plants. — Ann. NY. Acad. Sci. 1206: 35–55, 2010.

    Article  PubMed  Google Scholar 

  • Morecroft, M.D., Marrs, R.H., Woodward, F.I.: Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish Highlands. — J. Ecol. 80: 49–56, 1992.

    Article  Google Scholar 

  • Nardini, A., Dimasi, F., Klepsch, M., Jansen, S.: Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. — Tree Physiol. 32: 1434–1441, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Neuner, G., Braun, V., Buchner, O., Taschler, D.: Leaf rosette closure in the alpine rock species Saxifraga paniculata Mill.: significance for survival of drought and heat under high irradiation. — Plant Cell Environ. 22: 1539–1548, 1999.

    Article  Google Scholar 

  • Neuner, G., Pramsohler, M.: Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. — Physiol. Plantarum 126: 196–204, 2006.

    Article  CAS  Google Scholar 

  • Nicotra, A.B., Atkin, O.K., Bonser, S.P. et al.: Plant phenotypic plasticity in a changing climate. — Trends Plant Sci. 15: 684–692, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Parmesan, C.: Ecological and evolutionary responses to recent climate change. — Annu. Rev. Ecol. Evol. S. 37: 637–669, 2006.

    Article  Google Scholar 

  • Pauli, H., Gottfried, M., Dullinger, S. et al.: Recent plant diversity changes on Europe’s mountain summits. — Science 336: 353–355, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Pauli, H., Gottfried, M., Grabherr, G.: Effect of climate change on the alpine and nival vegetation of the Alps. — J. Mt. Ecol. 7: 9–12, 2003.

    Google Scholar 

  • Pellissier, L., Bråthen, K.A., Pottier, J. et al.: Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. — Ecography 33: 1004–1014, 2010.

    Article  Google Scholar 

  • Pelorosso, R., Della Chiesa, S., Tappeiner, U. et al.: Stability analysis for defining management strategies in abandoned mountain landscapes of the Mediterranean basin. — Landscape Urban Plan. 103: 335–346, 2011.

    Article  Google Scholar 

  • Peñuelas, J., Boada, M.: A global change-induced biome shift in the Montseny mountains (NE Spain). — Glob. Change Biol. 9: 131–140, 2003.

    Article  Google Scholar 

  • Pigliucci, M.: Phenotypic Plasticity: Beyond Nature and Nurture. Pp. 344. Johns Hopkins University Press, Baltimore 2001.

    Google Scholar 

  • Pignatti, S.: [Flora of Italy. Vol. 3.] Pp. 507. Edagricole, Bologna 1982. [In Italian]

    Google Scholar 

  • Pignatti, S.: [Bioindicator values of vascular plants of the flora of Italy.] — Braun-Blanquetia 39: 3–97, 2005. [In Italian]

    Google Scholar 

  • Poorter, H., Gifford, R.M., Kriedemann, P.E., Wong, S.C.: A quantitative-analysis of dark respiration and carbon content as factors in the growth-response of plants to elevated CO2. — Aust. J. Bot. 40: 501–513, 1992.

    Article  CAS  Google Scholar 

  • Reich, P.B., Kloeppel, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduos hardwood and evergreen coniferous tree species. — Oecologia 104: 24–30, 1995.

    Article  Google Scholar 

  • Reich, P.B., Walters, M.B., Ellsworth, D.S.: Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. — Ecol. Monogr. 62: 365–392, 1992.

    Article  Google Scholar 

  • Rice, K.J., Emery, N.C.: Managing microevolution: restoration in the face of global change. — Front. Ecol. Environ. 1: 469–478, 2003.

    Article  Google Scholar 

  • Ruiz-Labourdette, D., Schmitz, M.F., Pineda, F.D.: Changes in tree species composition in Mediterranean mountains under climate change: indicators for conservation planning. — Ecol. Indic. 24: 310–323, 2013.

    Article  Google Scholar 

  • Scheepens, J.F., Frei, E.S., Stöcklin, J.: Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. — Oecologia 164: 141–150, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Sims, J.R., Haby, V.A.: Simplified colorimetric determination of soil organic matter. — Soil Sci. 112: 137–141, 1971.

    Article  CAS  Google Scholar 

  • Solomon, S., Qin D., Manning M. et al.: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 996. Cambridge University Press, Cambridge 2007.

    Google Scholar 

  • Stebbins, G.L.: Taxonomy and the evolution of genera, with special reference to the family Gramineae. — Evolution 10: 235–245, 1956.

    Article  Google Scholar 

  • Sultan, S.E.: Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. — Ecology 82: 328–343, 2001.

    Article  Google Scholar 

  • Suttle, K.B., Thomsen, M.A., Power, M.E.: Species interactions reverse grassland responses to changing climate. — Science 315: 640–642, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Taguchi, Y., Wada, N.: Variations of leaf traits of an alpine shrub Sieversia pentapetala along an altitudinal gradient and under a simulated environmental change. — Polar Biosci. 14: 79–87, 2001.

    Google Scholar 

  • Tammaro, F., Catonica, C.: New localities of Sesleria caerulea (L.) Ardoino (Poaceae) in Central Italy (Abruzzo). — Flora Mediterranea 10: 303–310, 2000.

    Google Scholar 

  • Theurillat, J.P., Guisan, A.: Potential impact of climate change on vegetation in the European Alps: a review. — Climatic Change 50: 77–109, 2001.

    Article  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araùjo, M.B. et al.: Climate change threats to plant diversity in Europe. — P. Natl. Acad. Sci. USA 102: 8245–8250, 2005.

    Article  CAS  Google Scholar 

  • Tutin, T.G., Heywood, V.H., Burges, N.A. et al.: Flora Europaea. Vol. 5. Pp. 176. Cambridge University Press, Cambridge 1980.

    Google Scholar 

  • Valladares, F., Gianoli, E., Gómez, J.M.: Ecological limits to plant phenotypic plasticity. — New Phytol. 176: 749–763, 2007.

    Article  PubMed  Google Scholar 

  • Valladares, F., Wright, S.J., Lasso, E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from Panamanian rainforest. — Ecology 81: 1925–1936, 2000.

    Article  Google Scholar 

  • Varone, L., Gratani, L.: Physiological response of eight Mediterranean maquis species to low air temperature during winter. — Photosynthetica 45: 385–391, 2007.

    Article  Google Scholar 

  • Violante, P.: [Chemical Methods of Soil Analysis.] Pp. 60. Franco Angeli Editore, Milan 2000. [In Italian]

    Google Scholar 

  • Vitasse, Y., Bresson, C.C., Kremer, A. et al.: Quantifying phenological plasticity to temperature in two temperate tree species. — Funct. Ecol. 24: 1211–1218, 2010.

    Article  Google Scholar 

  • Walther, G.R.: Community and ecosystem responses to recent climate change. — Philos. T. R. Soc. B. 365: 2019–2024, 2010.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M. et al.: The worldwide leaf economics spectrum. — Nature 428: 821–827, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zunzunegui, M., Ain-Lhout, F., Díaz Barradas, M.C. et al.: Physiological, morphological and allocation plasticity of a semi-deciduous shrub. — Acta Oecol. 35: 370–379, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gratani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gratani, L., Crescente, M.F., D’Amato, V. et al. Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica 52, 386–396 (2014). https://doi.org/10.1007/s11099-014-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0042-9

Additional key words

Navigation