Skip to main content
Log in

Evaluation of some stem taper models for Camellia japonica in Mount Halla, Korea

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the performance of the four stem taper models on Camellia japonica in Jeju Island, Korea using fit statistics and lack-of-fit statistics. The five statistical criteria that were used in this study were standard error of estimate (SEE), mean bias ( \(\bar E\) ), absolute mean difference (AMD), coefficient of determination (R 2), and root mean square error (RMSE). Results showed that the Kozak model 02 stem taper had the best performance in all fit statistics (SEE: 3.4708, \(\bar E\): 0.0040 cm, AMD: 0.9060 cm, R 2: 0.9870, and RMSE: 1.2545). On the other hand, Max and Burkhart stem taper model had the poorest performance in each statistical criterion (SEE: 4.2121, \(\bar E\): 0.2520 cm, AMD: 1.1300 cm, R 2: 0.9805, and RMSE: 1.5317). For the lack-of-fit statistics, the Kozak model 02 also provided the best performance having the best AMD in most of the relative height classes for diameter outside bark prediction and in most of the DBH classes for total volume prediction while Max and Burkhart had the poorest performance. These stem taper equations could help forest managers to better estimate the diameter outside bark at any given height, merchantable stem volumes and total stem volumes of the standing trees of Camellia japonica in the forests of Jeju Island, Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akindele SO, LeMay VM (2006) Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management 226: 41–48. DOI: 10.1016/j.foreco.2006.01.022

    Article  Google Scholar 

  • Berhe L, Arnoldsson G (2008) Tree taper models for Cupressus lusitanica plantations in Ethiopia. Southern Forests 70(3): 193–203. DOI: 10.2989/SF.2008.70.3.2.663

    Article  Google Scholar 

  • Biging GS (1984) Taper equations for second-growth mixed conifers in northern California. Forest Science 30: 1103–1117.

    Google Scholar 

  • Brooks JR (2001) Interim volume tables for Atlantic white cedar. The Consultant 46(1): 24–28.

    Google Scholar 

  • Brooks JR, Martin S, Jordan J, et al. (2002) Interim taper and cubic-foot volume equations for young longleaf pine plantations in Southwest Georgia. Gen. Tech. Rep. SRS-48. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. pp 467–470.

    Google Scholar 

  • Brooks JR, Jiang L, Ozijelik R (2008) Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management 256: 147–151. DOI: 10.1016/j.foreco.2008.04.018

    Article  Google Scholar 

  • Coble DW, Hilpp K (2006) Compatible cubic-foot stem volume and upper-stem diameter equations for semi-intensive plantation grown loblolly pine trees in East Texas. Southern Journal of Applied Forestry 30(3): 132–141.

    Google Scholar 

  • Corral-Rivas JJ, Dieguez-Aranda U, Rivas SC, et al. (2007) A merchantable volume system for major pine species in El Salto, Durango (Mexico). Forest Ecology and Management 238: 118–129. DOI: 10.1016/j.foreco.2006.09.074

    Article  Google Scholar 

  • Chung YG, Kim DH, Kim CM (2010) Development of stem profile and taper equation for Quercus acuta in Jeju experiment forests. Journal of Korean Forest Society 99(1): 57–61 (In Korean with English abstract).

    Google Scholar 

  • Figueiredo-Filho A, Borders BE, Hitch KL (1996) Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management 83: 39–46. DOI: 10.1016/0378-1127(96)03706-1

    Article  Google Scholar 

  • Fonweban JN (1999) An evaluation of numerical integration of taper functions for volume estimation in Eucalyptus saligna stands. Journal of Tropical Forest Science 11(2): 410–419.

    Google Scholar 

  • Guendehou GHS, Lehtonen A, Moudachirou M, et al. (2012) Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests 74: 77–88. DOI: 10.2989/20702620.2012.701432

    Article  Google Scholar 

  • Haywood A (2009) Estimation of height growth patterns and site index curves for Pinus radiata plantations in New South Wales, Australia. Southern Forests 71(1): 11–19. DOI: 10.2989/SF.2009.71.1.2.739

    Article  Google Scholar 

  • Heidarsson L, Pukkala T (2011) Taper functions for lodgepole pine (Pinus contorta) and Siberian larch (Larix sibirica) in Iceland. Icelandic Agricultural Sciences 24: 3–11.

    Google Scholar 

  • Hofstad O (2005) Review of biomass and volume functions for individual trees and shrubs in southeast Africa. Journal of Tropical Forest Science 17(1): 151–162.

    Google Scholar 

  • Jiang L, Brooks JR, Wang J (2005) Compatible taper and volume equations for yellow-poplar in West Virginia. Forest Ecology and Management 213: 399–409. DOI: 10.1016/j.foreco.2005.04.006

    Article  Google Scholar 

  • Klos RJ, Wang GG, Dang QL, et al. (2007) Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Forestry 22(3): 163–170.

    Google Scholar 

  • Korea Forest Research Institute (2014) Experimental forests of the Korea Forest Research Institute. Seoul, Korea. p 27.

    Google Scholar 

  • Korea Forest Service (2012) Statistical yearbook of forestry p488.

    Google Scholar 

  • Korea Meteorological Administration (2014) Available online at: http://www.kma.go.kr/(Accessed on April, 2014)

  • Kozak A (1988) A variable-exponent taper equation. Canadian Journal of Forest Research 18: 1363–1368. DOI: 10.1139/x88-213

    Article  Google Scholar 

  • Kozak A (2004) My last words on taper equations. The Forestry Chronicle 80(4): 507–515. DOI: 10.5558/tfc80507-4

    Article  Google Scholar 

  • Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Canadian Journal of Forest Research 33: 976–987. DOI: 10.1139/x03-022

    Article  Google Scholar 

  • Kublin E, Helene A, Lappi J (2008) A flexible regression model for diameter prediction. European Journal of Forest Research 127: 415–428. DOI: 10.1007/s10342-008-0225-7

    Article  Google Scholar 

  • Lee KH, Son YM, Chung YG, et al. (1999) A taper and volume prediction system for Pinus densiflora in Kangwon province, Korea. Korea Forest Institute Journal of Forest Science 62: 155–166.

    Google Scholar 

  • Lee WK, Seo JH, Son YM, et al. (2003) Modeling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management 172: 69–77. DOI: 10.1016 0378-1127(02)00139-1

    Article  Google Scholar 

  • Lee TJ, Nam MJ, Lee SK, et al. (2009) The Jeju dataset: Threedimensional interpretation of MT data from mid-mountain area of Jeju Island, Korea. Journal of Applied Geophysics 68: 171–181. DOI: 10.1016/j.jappgeo.2008.11.006

    Article  Google Scholar 

  • Li R, Weiskittel AR (2010) Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Annals of Forest Science 67: 302–317. DOI: 10.1051/forest/2009109

    Article  Google Scholar 

  • Li R, Weiskittel A, Dick AR, et al. (2012) Regional stem taper equations for eleven conifer species in the Acadian Region of North America: development and assessment. Northern Journal of Applied Forestry 29(1): 5–14. DOI: 10.5849/njaf.10-037

    Article  Google Scholar 

  • Lumbres RIC, Lee YJ, Choi HS, et al. (2014) Comparative Analysis of Four Stem Taper Models for Quercus glauca in Mount Halla, Jeju Island, South Korea. Journal of Mountain Science 11(2): 442–448. DOI: 10.1007//11629-013-2759-5

    Article  Google Scholar 

  • Martin AJ (1981) Taper and volume equations for selected Appalachian hardwood species. USDA For Serv Res Pap. NE-490. p 21.

    Google Scholar 

  • Max TA, Burkhart HE (1976) Segmented polynomial regression applied to taper equations. Forest Science 22(3): 283–289.

    Google Scholar 

  • Ozcelik R, Brooks JR, Jiang L (2011) Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models. European Journal of Forest Research 130: 613–621. DOI: 10.1007/s10342-010-0453-5

    Article  Google Scholar 

  • Ramsar Convention (2014) Ramsar Convention on Wetlands. Available online at: http://www.ramsar.org (Accessed on April, 2014)

    Google Scholar 

  • Rojo A, Perales X, Sanchez-Rodriguez F, et al. (2005) Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). European Journal of Forest Research 124: 177–186. DOI: 10.1007/s10342-005-0066-6

    Article  Google Scholar 

  • Sharma M, Zhang SY (2004) Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Forest Ecology and Management 198: 39–53. DOI: 10.1016/j.foreco.2004.03.035

    Article  Google Scholar 

  • SAS Institute Inc (2004) SAS/STAT 9.1 User’s Guide. SAS Institute Inc., Cary. NC, USA.

    Google Scholar 

  • Son YM, Lee KH, Lee WK, et al. (2002) Stem taper equations for six major tree species in Korea. Journal of Korean Forest Society 91(2): 213–218.

    Google Scholar 

  • Son YM, Kim H, Lee HY, et al. (2009) Taper equations and stem volume table of Eucalyptus pellita and Acacia mangium plantations in Indonesia. Journal of Korean Forest Society 98(6): 633–638 (In Korean with English abstract)

    Google Scholar 

  • Subedi N, Sharma M, Parton J (2011) Effects of sample size and tree selection criteria on the performance of taper equations. Scandinavian Journal of Forest Research 26: 555–567. DOI: 10.1080/02827581.2011.583677

    Article  Google Scholar 

  • Yang Y, Huang S, Trincado G, et al. (2009) Nonlinear mixedeffects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada. European Journal of Forest Research 128: 415–429. DOI: 10.1007/s10342-009-0286-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosciiito Ian C. Lumbres.

Additional information

http://orcid.org/0000-0002-8337-917X

http://orcid.org/0000-0003-2444-1807

http://orcid.org/0000-0003-3811-8373

http://orcid.org/0000-0003-4221-6435

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.C., Seo, Y.O., Won, H.K. et al. Evaluation of some stem taper models for Camellia japonica in Mount Halla, Korea. J. Mt. Sci. 12, 1395–1402 (2015). https://doi.org/10.1007/s11629-014-3363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3363-z

Keywords

Navigation