Skip to main content
Log in

A flexible regression model for diameter prediction

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a functional regression model for diameter prediction. Usually stem form is estimated from a regression model using dbh and height of the sample tree as predictor. With our model additional diameter observations measured at arbitrary locations within the sample tree can be incorporated in the estimation in order to calibrate a standard prediction based on dbh and height. For this purpose, the stem form of a sample tree is modelled as a smooth random function. The observed diameters are assumed as independent realizations from a sample of possible trajectories of the stem contour. The population average of the stem form within a given dbh and height class is estimated with the taper curves applied in the national forest inventory in Germany. Tree deviation from the population average is modelled with the help of a Karhunen–Loève expansion for the random part of the trajectory. Eigenfunctions and scores of the Karhunen–Loève expansion are estimated through conditional expectations within the methodological framework of functional principal component analysis (FPCA). In addition to a calibrated estimation of the stem form, FPCA provides asymptotic pointwise or simultaneous confidence intervals for the calibrated diameter predictions. For the application of functional principal component analysis modelling the covariance function of the random process is crucial. The main features of the functional regression model are discussed informally and demonstrated by means of practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cressie N (1991) Statistics for spatial data. Probability and mathematical statistics. Wiley, New York, 900 pp

  • Dierckx P (1993) Curve and surface fitting with splines. Monographs on numerical analysis. Oxford Science Publications. Clarendon Press, Oxford, pp 285

  • Gregoire TG, Schabenberger O, Kong F (2000) Prediction from an integrated regression equation: a forestry application. Biometrics 56:414–419. doi:10.1111/j.0006-341X.2000.00414.x

    Article  PubMed  CAS  Google Scholar 

  • Hradetzky J (1980) Spline Funktionen und ihre Anwendung in der forstlichen Forschung. Forstwissenschaftliches Centralblatt 100(1):45–59. doi:10.1007/BF02640618

    Article  Google Scholar 

  • Kublin E (2003) Einheitliche Beschreibung der Schaftform—Methoden und Programme—BDATPro. Forstw Cbl 122(3):183–200. doi:10.1046/j.1439-0337.2003.00183.x

    Article  Google Scholar 

  • Lappi J (2006) A multivariate, nonparametric stem-curve prediction method. Can J For Res 36(4):1017–1027. doi:10.1139/X05-305

    Article  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, London

    Google Scholar 

  • Max TA, Burkhart HE (1976) Segmented polynomial regression applied to taper equations. For Sci 22(3):283–289

    Google Scholar 

  • Pollanschütz J (1965) Eine neue Methode der Formzahl- und Massenbestimmung stehender Stämme. (Neue Form- bzw. Kubierungsfunktion und ihre Anwendung). Dissertation Thesis, Hochschule für Bodenkultur Wien, Wien: Forstliche Bundesversuchsanstalt, pp 168

  • Rojo A, Perales X, Sanchez-Rodriguez F, Alvarez-Gonzalez JG, v Gadow K (2005) Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). Eur J For Res 124(3):177–186. doi:10.1007/s10342-005-0066-6

    Google Scholar 

  • Sloboda B, Gaffrey D, Matsumura N (1998) Presentation of tree individual taper curves and their dynamics by spline functions and generalization by linear taper curve models. Allg Forst Jagdzeitung 169(2):29–39

    Google Scholar 

  • Trincado G, Burkhart HE (2006) A generalized approach for modeling and localizing stem profile curves. For Sci 52(6):670–682

    Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Texts in Statistical Science Series, 67. Chapman & Hall, CRC, pp 416

  • Yao F, Muller HG, Wang JL (2005) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100(470):577–590. doi:10.1198/016214504000001745

    Article  CAS  Google Scholar 

  • Zhang YJ, Borders BE, Bailey RL (2002) Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing loblolly pine. For Sci 48(3):595–607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Kublin.

Additional information

Communicated by M. Köhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kublin, E., Augustin, N.H. & Lappi, J. A flexible regression model for diameter prediction. Eur J Forest Res 127, 415–428 (2008). https://doi.org/10.1007/s10342-008-0225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0225-7

Keywords

Navigation