Skip to main content
Log in

Alternative system for micropropagation of Prunus campanulata (Maxim.)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Herein, an in vitro multiplication protocol for Prunus campanulata was evaluated. The effects of 15.0, 30.0, and 45.0 g L−1 sucrose and three flask sealing methods (PVC film, rigid polypropylene lid, and rigid lid with membrane) were analyzed at the multiplication, rooting, and acclimatization stages. For in vitro multiplication, shoot tips of approximately 1 cm in length containing two pairs of leaves from seedlings germinated in vitro in Woody Plant Medium (WPM) were used. Evaluations considered the multiplication of shoot apexes in three subcultures (at 40, 80, and 120 d) for survival, number of shoots, shoot length, number of leaves, and multiplication rate. In the rooting phase, the rooting percentage, number of roots, and root length were assessed. In the acclimatization phase under shaded and full sun conditions, seedling survival and biometric characteristics were evaluated, including stem diameter, height, and number of leaves. The addition of sucrose to the medium, at a concentration of 45.0 g L−1, associated with sealing using PVC plastic film, showed inadequate results for in vitro multiplication of P. campanulata. The addition of sucrose to the culture medium in concentrations ranging from 15.0 to 30.0 g L−1 favored in vitro rooting. The use of a permeable membrane for sealing enabled the growth of more vigorous shoots in terms of percentage of rooting and root length, and these seedlings stood out in the acclimatization phases with greater rates of survival and improved biometric characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Arencibia AD, Gómez A, Poblete MA, Orellana F, Alarcón JE, Cortez N, Valenzuela MA (2018) Establishment of photomixotrophic cultures for high-scale micropropagation by temporary immersion bioreactors (TIBs) in plant commercial species. Acta Hortic 1224:203–208

    Article  Google Scholar 

  • Barbosa GG, Targa VMI, Otoni WC, Rondon JN, Costa FA (2021) Cultivo in vitro de embrião zigótico de baru influenciado por tipos de vedações e concentrações de sacarose. Braz J Dev 7:42390–42408

    Article  Google Scholar 

  • Carrari-Santos R, Vettorazzi RG, Pinto VB, Sena EOA, de Oliveira JG, Campostrini E, Silveira V, Santa-Catarina C (2023) Microporous membrane and culture medium affect in vitro seedling development of Dalbergia nigra (Vell.) Ex Benth. (Fabaceae) by modulation of the protein profile and accumulation of ethylene and CO2. Plant Cell Tissue Organ Cult 153:559–576. https://doi.org/10.1007/s11240-023-02492-9

    Article  CAS  Google Scholar 

  • Chen B, Li J, Zhang J, Wu Z, Fan H, Li Q (2016) Optimizing the rapid technique for propagation of Cerasus campanulata by tissue culture. Pak J Bot 48:305–309

    CAS  Google Scholar 

  • Chen SY, Chien CT, Chung JD, Yang YS, Kuo SR (2007) Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Sci Res 17:21–32. https://doi.org/10.1017/S0960258507383190

    Article  CAS  Google Scholar 

  • De-Souza LM, Barbosa MR, De Souza RA, Bussmeyer EC, Houllou LM (2020) Influência da sacarose no crescimento e no perfil de pigmentos fotossintéticos em duas espécies arbóreas cultivadas in vitro. Braz J Dev 6:1916–1626

    Article  Google Scholar 

  • Dutra LF, Wendling I, Brondani GE (2009) A Micropropagação de eucalipto. Pesqui. Florest. Bras, Colombo

    Google Scholar 

  • Estouka IY, Alhagdow MM, Bughrara SS (2022) Effect of sucrose concentration on micropropagation of ginger (Zingiber officinale Rosc.). J. Genet. Genom Plant Breed 6:34–40

    CAS  Google Scholar 

  • Ferreira EB, Cavalcanti PP, Nogueira DA (2018) ExpDes.pt: Pacote Experimental Designs (Portuguese). R package version 1.2.0. https://CRAN.Rproject.org/package=ExpDes.pt. Accessed 20 Feb 2023

  • Flores R, Uliana SC, Pimentel N, Garlet TMB (2013) Sacarose e sorbitol na conservação in vitro de Pfaffia tuberosa (Amaranthaceae). J Biotechnol Biodivers 4:192–199

    Article  CAS  Google Scholar 

  • Fortini EA, Batista DS, Mamedes-Rodrigues TC, Felipe SHS, Correia LNF, Chagas C, Silva PO, Rocha DI, Otoni WC (2021) Gas exchange rates and sucrose concentrations affect plant growth and production of flavonoids in Vernonia condensata grown in vitro. Plant Cell Tiss Org Cult 144:593–605. https://doi.org/10.1007/s11240-020-01981-5

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Gago D, Vilavert S, Bernal MÁ, Sánchez C, Aldrey A, Vidal N (2021) The effect of sucrose supplementation on the micropropagation of Salix viminalis L. shoots in semisolid medium and temporary immersion bioreactors. Forests 12:1408. https://doi.org/10.3390/f12101408

    Article  Google Scholar 

  • Guanais DD, Moraes F, Junior PCF (2022) Cultivo in vitro de Acca sellowiana (O. Berg.) burret. em sistema de ventilação natural com tampas comerciais. Encicl Biosf 19:190

    Article  Google Scholar 

  • INMET Instituto Nacional De Meteorologia (2023) Dados Históricos. https://tempo.inmet.gov.br/. Accessed 20 Jan 2023

  • Jan T, Gul S, Khan A, Pervez S, Noor A, Amin H, Bibi S, Nawaz MA, Rahim A, Ahmad MS, Azam R, Ullah H (2023) Range of factors in the reduction of hyperhydricity associated with in vitro shoots of Salvia santolinifolia Bioss. Braz J Biol 83. https://doi.org/10.1590/1519-6984.246904

  • Jesus AMS, Villa F, Lara ACC, Pasqual M (2011) Avaliação do efeito das concentrações de sacarose e dos estádios de desenvolvimento do fruto no cultivo in vitro de embriões de frutos de cafeeiro. Rev Ceres 58:679–684. https://doi.org/10.1590/S0034-737X2011000600001

    Article  CAS  Google Scholar 

  • Lembrechts R, Ceustersb N, Profta MP, Ceustersb J (2017) Sugar and starch dynamics in the medium-root-leaf system indicate possibilities to optimize plant tissue culture. Sci Hortic 224:226–231

    Article  CAS  Google Scholar 

  • Liu L, Chen X, Xle J, Chen G, Zhang F, Huang J, Fan J, Luo W (2020) Study on seed germination of Cerasus campanulata. Forest Environ Sci 36:105–108

    Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings-International Plant Propagator’s Society 30:421–427

    Google Scholar 

  • Lobo AKM, Martins MO, Lima-Neto MC, Machado EC, Ribeiro FV, Silveira JAG (2015) Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol 179:113–121

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi H, Bacher L, Lacerda M, Sartori S (2006) Frutas brasileiras e exóticas cultivadas: (de consumo in natura). Instituto Plantarum de Estudos da Flora, São Paulo

    Google Scholar 

  • Lowe KC, Anthony P, Power JB, Davey MR (2003) Novel approaches for regulating gas supply to plant systems in vitro: application and benefits of artificial gas carriers. In Vitro Cell Dev Biol - Plant 39:557–566

    Article  CAS  Google Scholar 

  • Miranda NA, Titon M, Pereira IM, Fernandes JSC, Gonçalves JF, Rocha FM (2016) Meio de cultura, reguladores de crescimento e formas de vedação de tubos de ensaio na multiplicação in vitro de candeia (Eremanthus incanus (Less.) Less). Sci For 44:112. https://doi.org/10.18671/scifor.v44n112.22

    Article  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nunez-Ramos JE, Quiala E, Posada L, Mestanza S, Sarmiento L, Daniels D, Arroyo CR, Naranjo B, Vizuete K, Noceda C, Kosky RG (2021) Morphological and physiological responses of tara (Caesalpinia spinosa (Mol.) O. Kuntz) microshoots to ventilation and sucrose treatments. In Vitro Cell Dev Biol - Plant 57:1–14. https://doi.org/10.1007/s11627-020-10104-w

    Article  CAS  Google Scholar 

  • Oliveira-Junior JB, Pessoa CMP, Scherwinski-Pereira JE, Lopes HS, Costa FHS (2022) A simple, alternative and efficient sealing system to improve natural ventilation in culture vessels and the morphophysiological and anatomical quality of Croton lechleri (Muell. Arg.) grown in vitro. Rev Biol 77:1–10. https://doi.org/10.1007/s11756-022-01140-5

    Article  CAS  Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol - Plant 55:242–257

    Article  Google Scholar 

  • Polivanova OB, Bedarev VA (2022) Hyperhydricity in plant tissue culture. Plants 11:3313. https://doi.org/10.3390/plants11233313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 20 Jun 2022

  • Saldanha CW, Otoni CG, De Azevedo JLF, Dias LLC, Do Rêgo MM, Otoni WC (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:413–422. https://doi.org/10.1007/s11240-012-0162-5

    Article  CAS  Google Scholar 

  • Zhang YH, Rong JD, Fu Y, Chen LG, Chen LY, Zheng YS (2015) Tissue culture and plant regeneration of Prunus campanulata Maxim. J Anim Plant Sci 25:146–151

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. We thank Isabel Homczinski, Marina Romaniuk, Anália Surkamp, Thainah Candido, and Odimeia Teixeira for support in the laboratory and analysis. We also thank Evelyn Roberta Nimmo for the language review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Sanson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanson, D., de Almeida Garrett, A.T., Rodrigues, I.C. et al. Alternative system for micropropagation of Prunus campanulata (Maxim.). In Vitro Cell.Dev.Biol.-Plant (2024). https://doi.org/10.1007/s11627-024-10424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11627-024-10424-1

Keywords

Navigation