Skip to main content
Log in

Thymol modulates in vitro plant regeneration and gene expression in sesame

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Plant tissue culture constitutes an indispensable tool in the advancement of agricultural sciences and modern agriculture today. However, its applications remain limited due to the genotype-dependent culture response as well as the recalcitrant species, such as sesame (Sesamum indicum L.). In the present study, reproducible and high-efficiency plant regeneration from cotyledonary explants was achieved in different genotypes of sesame using thymol as the supplement to culture media. We found that removal of NH4NO3 from Murashige and Skoog (MS) basal salt prevents browning of the explants, and supplement of thymol to the MS medium promotes callus induction and shoot regeneration, as well as improves adventitious root formation. Moreover, we showed that the occurrence of shoot regeneration implicates 91 differential expression genes (DEGs) and is coincident with endogenous abscisic acid (ABA) and salicylic acid (SA) reduction in the explants. The DEGs are mostly enriched in functions related to disaccharide and oligosaccharide metabolic processes, and response to red or far-red light, as well as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including pentose phosphate pathway, carbon fixation in photosynthetic organisms, and plant MAPK signaling pathway. Finally, we confirmed the regulatory role of thymol on the relevant gene expression underlying in vitro shoot regeneration. Thus, thymol may offer a promising prospect of broad application in plant tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Adil M, Haider Abbasi B, Ul Haq I (2019) Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnol Rep (Amst) 24:e00380

  • Ahmad I, Hussain T, Ashraf I, Nafees M, Maryam MR, Iqbal M (2013) Lethal effects of secondary metabolites on plant tissue culture. Am Eurasian J Agric Environ Sci 13:539–547

    CAS  Google Scholar 

  • Al-Shafeay AF, Ibrahim AS, Nesiem MR, Tawfik MS (2011) Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag 1. GM Crops 2:182–192

    Article  PubMed  Google Scholar 

  • Anandan R, Deepak KV, Deenathayalan T, Vignesh M, Priyadharshini B, Murugan S, Prakash M (2018a) Efficient in vitro organogenesis and plantlets regeneration in sesame (Sesamum indicum L.)-an important oilseed crop. Horti Biotechnol Res 4:01–05

    Google Scholar 

  • Anandan R, Prakash M, Deenadhayalan T, Nivetha R, Kumar NS (2018b) Efficient in vitro plant regeneration from cotyledon-derived callus cultures of sesame (Sesamum indicum L.) and genetic analysis of True-to-Type regenerants using RAPD and SSR markers. S Afr J Bot 119:244–251

    Article  CAS  Google Scholar 

  • Andargie M, Vinas M, Rathgeb A, Moller E, Karlovsky P (2021) Lignans of sesame (Sesamum indicum L.): a comprehensive review. Molecules 26:883

  • Andriotis VME, Smith AM (2019) The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A 116:15297–15306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bapat VA, George L, Rao PS (1989) Isolation, culture and callus formation of sesame (Sesamum indicum L. cv. PT) protoplasts. Indian J Exp Biol 27:182–184

    Google Scholar 

  • Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.-an important oil plant. J Agric Technol 2:259–269

    Google Scholar 

  • Bhattacharyya J, Chakraborty A, Mitra J, Chakraborty S, Pradhan S, Manna A, Sikdar N, Sen SK (2015) Genetic transformation of cultivated sesame (Sesamum indicum L. cv Rama) through particle bombardment using 5-day-old apical, meristematic tissues of germinating seedlings. Plant Cell Tiss Org Cult 123:455–466

    Article  CAS  Google Scholar 

  • Bidabadi SS, Jain SM (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants (basel) 9:702

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4:173–178

    Article  Google Scholar 

  • Chen YM, Huang JZ, Hou TW, Pan IC (2019) Effects of light intensity and plant growth regulators on callus proliferation and shoot regeneration in the ornamental succulent Haworthia. Bot Stud 60:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhi Y, Yi M, Wang J, Liang X, Tu L, Fu R, Cao G, Shi Y, Sun Y (1996) Transformation of enineered male sterile gene and establishment of transgenic plants in sesame (Sesame indicum L.). Acta Agric Bor Sin 11:33–38 (in Chinses with English summary)

    Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 251:1175–1190

    Article  CAS  PubMed  Google Scholar 

  • Datta AK, Biswas AK (1986) Callus induction and plant regeneration from leaf tissue of Sesamum indicum L. Cell Chromosome Res 9:7–10

    Google Scholar 

  • De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM (2021) Sweet modifications modulate plant development. Biomolecules 11:756

    Article  PubMed  PubMed Central  Google Scholar 

  • De Lorenzo G, Ferrari S, Giovannoni M, Mattei B, Cervone F (2019) Cell wall traits that influence plant development, immunity, and bioconversion. Plant J 97:134–147

    PubMed  Google Scholar 

  • Debnath AJ, Gangopadhyay G, Basu D, Sikdar SR (2018) An efficient protocol for in vitro direct shoot organogenesis of Sesamum indicum L. using cotyledon as explant. 3 Biotech 8:146

  • Ding M, Dong H, Xue Y, Su S, Wu Y, Li S, Liu H, Li H, Han J, Shan X, Yuan Y (2020) Transcriptomic analysis reveals somatic embryogenesis-associated signaling pathways and gene expression regulation in maize (Zea mays L.). Plant Mol Biol 104:647–663

    Article  CAS  PubMed  Google Scholar 

  • Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, Fonceka D, Yu J, Mmadi MA, Yehouessi LW, Liao B, Zhang X, Cisse N (2017) The emerging oilseed crop Sesamum indicum enters the “Omics” era. Front Plant Sci 8:1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossa K, Mmadi MA, Zhou R, Zhang T, Su R, Zhang Y, Wang L, You J, Zhang X (2019) Depicting the core transcriptome modulating multiple abiotic stresses responses in sesame (Sesamum indicum L.). Int J Mol Sci 20:3930

  • Fuji Y, Uchida A, Fukahori K, Chino M, Ohtsuki T, Matsufuji H (2018) Chemical characterization and biological activity in young sesame leaves (Sesamum indicum L.) and changes in iridoid and polyphenol content at different growth stages. PLoS One 13:e0194449

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gangopadhyay G, Poddar R, Gupta S (1998) Micropropagation of sesame (Sesamum indicum L.) by in vitro multiple shoot production from nodal explants. Phytomorphology 48:83–90

    Google Scholar 

  • Gao Y, Zhao M, Wu XH, Li D, Borthakur D, Ye JH, Zheng XQ, Lu JL (2019) Analysis of differentially expressed genes in tissues of Camellia sinensis during dedifferentiation and root redifferentiation. Sci Rep 9:2935

    Article  PubMed  PubMed Central  Google Scholar 

  • Gayatri T, Basu A (2020) Development of reproducible regeneration and transformation system for Sesamum indicum. Plant Cell Tiss Org Cult 143:441–456

    Article  CAS  Google Scholar 

  • Guo K, An G, Wang N, Pang B, Shi Z, Bai H, Zhang L, Chen J, Xu W (2021) Thymol ameliorates ammonium toxicity via repressing polyamine oxidase-derived hydrogen peroxide and modulating ammonium transporters in rice root. Food Prod Process and Nutr 3:7

    Article  Google Scholar 

  • He C, Zeng Y, Fu Y, Wu J, Liang Q (2020) Light quality affects the proliferation of in vitro cultured plantlets of Camellia oleifera Huajin. Peer J 8:e10016

  • Hisano H, Matsuura T, Mori IC, Yamane M, Sato K (2016) Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley. Plant Physiol Biochem 99:66–72

    Article  CAS  PubMed  Google Scholar 

  • Huang WL, Lee CH, Chen YR (2012) Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tiss Org Cult 108:257–263

    Article  CAS  Google Scholar 

  • Iglesias-Fernandez R, Barrero-Sicilia C, Carrillo-Barral N, Onate-Sanchez L, Carbonero P (2013) Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7. Plant J 74:767–780

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K (2019) Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70:377–406

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H, Sugimoto K (2017) Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175:1158–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain SC, Khanna P (1973) Production of sterols from Sesamum indicum Linn, tissue culture. Indian J Pharm 35:163–164

    CAS  Google Scholar 

  • Khaleel AE-S, Gonaid MH, El-Bagry RI, Sleem AA, Shabana M (2007) Chemical and biological study of the residual aerial parts of Sesamum indicum L. J Food Drug Anal 15:249–257

    CAS  Google Scholar 

  • Kim Y (2001) Effects of BA, NAA, 2,4-D and AgNO3 treatments on the callus induction and shoot regeneration from hypocotyl and cotyledon of sesame (Sesamum indicum L.). J Kor Soc Hort Sci 42:70–74

    CAS  Google Scholar 

  • Kulkarni VV, Ranganatha CN, Shankergoud I (2017) Interspecific crossing barriers in sesame (Sesamum indicum L.). Int J Curr Microbiol Appl Sci 6:4894–4900

    Article  Google Scholar 

  • Kulus D, Woźny A (2020) Influence of light conditions on the morphogenetic and biochemical response of selected ornamental plant species under in vitro conditions: a mini-review. Biotechnologia 101:75–83

    Article  CAS  Google Scholar 

  • Kwon TH, Abe T, Sasahara T (1993) Efficient callus induction and plant regeneration in Sesamum species. Plant Tiss Cult Lett 10:260–266

    Article  CAS  Google Scholar 

  • Larskaya IA, Gorshkova TA (2015) Plant oligosaccharides – outsiders among elicitors?. Biochem Mosc 80:881–900

    Article  CAS  Google Scholar 

  • Lee ST, Huang WL (2013) Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. Bot Stud 54:5

  • Leljak-Levanić D, Bauer N, Mihaljević S, Jelaska S (2004) Somatic embryogenesis in pumpkin (Cucurbita pepo L.): control of somatic embryo development by nitrogen compounds. J Plant Physiol 161:229–236

    Article  PubMed  Google Scholar 

  • Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549

    Article  CAS  PubMed  Google Scholar 

  • Lokesha R, Rahimansab J, A.R.G. R, Dharmaraj PS, (2012) Whole plant regeneration via adventitious shoot formation from de-embryonated cotyledon explants of sesame (Sesamum indicum L.). World J Sci Tech 2:47–51

    CAS  Google Scholar 

  • Louvet R, Cavel E, Gutierrez L, Guenin S, Roger D, Gillet F, Guerineau F, Pelloux J (2006) Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 224:782–791

    Article  CAS  PubMed  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2018) An introduction to plant tissue culture: advances and perspectives. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Methods in molecular biology. Humana Press, New York, NY, pp 3–13

    Google Scholar 

  • Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA (2012) Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503:65–74

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Malaghan SV, Lokesha R, Savitha R, Ranganatha ARG (2013) Adventitious shoot regeneration in sesame (Sesamum indicum L.) (Pedaliaceae) via deembryonated cotyledonary explants. Res J Biol 1:31–35

    Google Scholar 

  • Manivannan A, Soundararajan P, Park YG, Jeong BR (2016) Chemical elicitor-induced modulation of antioxidant metabolism and enhancement of secondary metabolite accumulation in cell suspension cultures of Scrophularia kakudensis Franch. Int J Mol Sci 17:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino D, Moran JF (2019) Can ammonium stress be positive for plant performance? Front Plant Sci 10:1103

    Article  PubMed  PubMed Central  Google Scholar 

  • Meenashree B, Kathiravan G, Srinivasan K, Rajangam B (2017) Effect of plant hormones and media composition on browning and growth of Bacopa monnieri callus cultures. Research J Pharm Tech 10:497–500

    Article  Google Scholar 

  • Miao H, Ju M, Wei L, Ma Q, Zhang H (2012) Establishment of sesame callus induction and shoot regeneration system. Chin Bull Bot 47:162–170 (in Chinese with English summary)

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380

    Article  PubMed  PubMed Central  Google Scholar 

  • Park CJ, Han SW, Chen X, Ronald PC (2010) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai MK, Shekhawat NS, Harish GAK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Org Cult 106:179–190

    Article  CAS  Google Scholar 

  • Raja A, Jayabalan N (2011) In vitro shoot regeneration and flowering of Sesame (Sesamum indicum L.) cv. SVPR - 1. J Agric Technol 7:1089–1096

    Google Scholar 

  • Rajniak J, Giehl RFH, Chang E, Murgia I, von Wiren N, Sattely ES (2018) Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat Chem Biol 14:442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage CM, Williams RR (2002) Inorganic nitrogen requirements during shoot organogenesis in tobacco leaf discs. J Exp Bot 53:1437–1443

    Article  CAS  PubMed  Google Scholar 

  • Rao KR, Kavi Kishor P, Vaidyanath K (2002) Biotechnology of sesame-an oil seed crop. Plant Cell Biotechnol Mol Biol 3:101–110

    Google Scholar 

  • Rikiishi K, Matsuura T, Ikeda Y, Maekawa M (2015) Light inhibition of shoot regeneration is regulated by endogenous abscisic acid level in calli derived from immature barley embryos. PLoS One 10:e0145242

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Schroder F, Lisso J, Lange P, Mussig C (2009) The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biol 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze J (2007) Improvements in cereal tissue culture by thidiazuron: a review. Fruit Veg Cereal Sci Biotech 1:64–79

    Google Scholar 

  • Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ, Park KH, Oh MK, Choi MY, Paik CH, Lee YS, Choi YE (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Dev Biol - Plant 43:209–214

    Article  CAS  Google Scholar 

  • Shehata WF, Aldaej MI, Alturki SM, Ghazzawy HS (2014) Effects of ammonium nitrate on antioxidants production of date palm (Phoenix dactylifera L.) in vitro. Biotechnology 13:116–125

    Article  CAS  Google Scholar 

  • Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Gruning NM, Kruger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963

    Article  PubMed  Google Scholar 

  • Su YH, Zhang XS (2014) The hormonal control of regeneration in plants. Curr Top Dev Biol 108:35–69

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

  • Tamoi M, Tabuchi T, Demuratani M, Otori K, Tanabe N, Maruta T, Shigeoka S (2010) Point mutation of a plastidic invertase inhibits development of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedlings. J Biol Chem 285:15399–15407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy SK, Kar J, Sahu D (2019) Advances in sesame (Sesamum indicum L.) breeding. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: industrial and food crops. Springer, Cham, pp 577–635

    Chapter  Google Scholar 

  • Van Tran Thanh K, Toubart P, Cousson A, Darvill AG, Gollin DJ, Chelf P, Albersheim P (1985) Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins. Nature 314:615–617

    Article  Google Scholar 

  • Vargas WA, Pontis HG, Salerno GL (2008) New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 227:795–807

    Article  CAS  PubMed  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov PV, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org 69:233–249

    Article  Google Scholar 

  • Wang TT, Shi ZQ, Hu LB, Xu XF, Han FX, Zhou LG, Chen J (2017) Thymol ameliorates Cadmium-induced phytotoxicity in the root of rice (Oryza sativa) seedling by decreasing endogenous nitric oxide generation. J Agric Food Chem 65:7396–7405

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, Li K, Song X, Chen J (2016) Characterization and comparative expression profiling of browning response in Medinilla formosana after cutting. Front Plant Sci 7:1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Were BA, Gudu S, Onkware AO, Carlsson AS, Welander M (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Organ Cult 85:235–239

    Article  Google Scholar 

  • Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J (2021) Molecular targets and biological functions of cAMP signaling in Arabidopsis. Biomolecules 11:688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Yang M, Cheng F, Liu S, Liang Y (2020) Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol 20:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZQ, Jia JF, Hu ZD (1997) Somatic embryogenesis in Sesamum indicum L. cv. Nigrum J Plant Physiol 150:755–758

    Article  CAS  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 103:377–386

    Article  CAS  Google Scholar 

  • Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40:2837–2849

    Article  CAS  PubMed  Google Scholar 

  • Yifter M, Sbhatu DB, Mekbib F, Abraha E (2013) In vitro regeneration of four Ethiopian varieties of sesame (Sesamum indicum L.) using anther culture. Asian J Plant Sci 12:214–218

    Article  Google Scholar 

  • Zhang X, Wang Y, Yan Y, Peng H, Long Y, Zhang Y, Jiang Z, Liu P, Zou C, Peng H, Pan G, Shen Y (2019) Transcriptome sequencing analysis of maize embryonic callus during early redifferentiation. BMC Genomics 20:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Wang H, Liu K, Li L, Yang J, An X, Li P, Yun L, Zhang Z (2021) The role of JrPPOs in the browning of walnut explants. BMC Plant Biol 21:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Sesame Research Center, Henan Academy of Agricultural Sciences, China, for providing seed samples of Sesamum indicum cv. Yuzhi 11, Yuzhi 4, Ezhi 7, and Luozhi 21.

Funding

This work was supported by the Major Scientific Research Project of Henan Higher Education Institutions (No.17B180006), the Henan Key Science and Technology Special Project (No.151100111200–1-3), and the Key Technologies Research & Development Program of Henan Province (No.172102410059; No.202102110024).

Author information

Authors and Affiliations

Authors

Contributions

RX designed this study and wrote the manuscript. XZ and JL together completed the experimental work. WJ participated in part of the tissue culture experiments. JZ contributed to the molecular experiments. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruqiang Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 843 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, J., Jia, W. et al. Thymol modulates in vitro plant regeneration and gene expression in sesame. In Vitro Cell.Dev.Biol.-Plant 58, 240–255 (2022). https://doi.org/10.1007/s11627-022-10266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-022-10266-9

Keywords

Navigation