Skip to main content
Log in

Use of cell cultures in vitro to assess the uptake of long dsRNA in plant cells

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

While RNAi approaches based on transgenic plants overexpressing double-stranded RNAs (dsRNAs) have yielded a number of genetically modified plants with interesting new traits, several problems associated with the use of genetically modified organisms caused a shift in interest towards exogenous application of the RNA molecules. A major challenge in the environmental RNAi approach is the delivery of the dsRNA molecules into cells. The presence of a cell wall provides a challenging barrier for the internalization of dsRNAs into plant cells. While small interfering RNAs (siRNA) have previously been demonstrated to be internalized in plant cells, the ability of long dsRNAs to cross the cell wall is under discussion. In this study, confocal fluorescence microscopy revealed the successful internalization of a Cy5-labeled long dsRNA (dsGFP, 500 bp) in Arabidopsis thaliana PSB-D cell cultures. However, a similar approach was not successful in Nicotiana tabacum BY-2 cell cultures. This discrepancy between the two cell cultures suggests a pivoting role of the cell wall in the uptake of dsRNAs. The use of carrier molecules complexed with dsRNA can overcome this internalization barrier, thus facilitating cellular dsRNA uptake. Complexation of the dsRNA with a cell-penetrating peptide (CPP)–based carrier was shown to accelerate its internalization in Arabidopsis cells compared to uptake of the free dsRNA. These results confirm the potential of dsRNAs to cross the plant cell wall of particular cells and the beneficial effect of carriers to improve dsRNA delivery in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bauer WD, Talmadge KW, Keegstra K, Albersheim P (1973) The structure of plant cell walls: II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol 51:174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett M, Deikman J, Hendrix B, Iandolino A (2020) Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells. Front Plant Sci 11:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramlett M, Plaetinck G, Maienfisch P (2020) RNA-based biocontrols—a new paradigm in crop protection. Engineering 6:522–527

    Article  CAS  Google Scholar 

  • Cagliari D, Dias NP, Galdeano DM, Santos EA, Smagghe G, Zotti MJ (2019) Management of pest insects and plant diseases by non-transformative RNAi. Front Plant Sci 10:1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Cagliari D, Santos EA, dos Dias N, Smagghe G, Zotti M (2018) Modulating gene expression – abridging the RNAi and CRISPR-Cas9 technologies. In: Singh A, Khan MW (Eds) Nontransformative strategies for RNAi in crop protection, In Tech Open, London, UK, 1–18

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Chen CP, Chou JC, Liu BR, Chang M, Lee HJ (2007) Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett 581:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Christiaens O, Petek M, Smagghe G, Taning CNT (2020) The use of nanocarriers to improve the efficiency of RNAi-based pesticides in agriculture. In: Fraceto LF, de Castro VLSS, Grillo R, Ávila D, Caixeta Oliveira H, Lima R (eds) Nanopesticides. Springer International Publishing, London, UK, pp 49–68

    Chapter  Google Scholar 

  • Christiaens O, Tardajos MG, Martinez Reyna ZL, Dash M, Dubruel P, Smagghe G (2018) Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front Physiol 9:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Chugh A, Eudes F (2008) Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS J 275:2403–2414

    Article  CAS  PubMed  Google Scholar 

  • Dalakouras A, Ganopoulos I (2021) Induction of promoter DNA methylation upon high-pressure spraying of double-stranded RNA in plants. Agronomy 11:789

    Article  CAS  Google Scholar 

  • Dalakouras A, Wassenegger M, McMillan JN, Cardoza V, Maegele I, Dadami E, Runne M, Krczal G, Wassenegger M (2016) Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs. Front Plant Sci 7:1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Das PR, Sherif SM (2020) Application of exogenous dsRNAs-induced RNAi in agriculture: challenges and triumphs. Front Plant Sci 11:946

    Article  PubMed  PubMed Central  Google Scholar 

  • De Schutter K, Christiaens O, Taning CNT, Smagghe G (2021) Boosting dsRNA delivery in plant and insect cells with peptide- and polymer-based carriers: cases-based current status and future perspectives. In: Mezzetti B, Sweet J, Burgos L (Eds) RNAi for plant improvement and protection, CABI, Wallingford, UK, 102–116

  • De Schutter K, Taning CNT, Van Daele L, Van Damme EJM, Dubruel P, Smagghe G (2022) RNAi-based biocontrol products: current status on market, regulatory aspects and risk assessment. Front Insect Sci 1:818037

    Article  Google Scholar 

  • Dubelman S, Fischer J, Zapata F, Huizinga K, Jiang C, Uffman J, Levine S, Carson D (2014) Environmental fate of double-stranded RNA in agricultural soils. PLoS One 9:e93155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubrovina AS, Aleynova OA, Kalachev AV, Suprun AR, Ogneva ZV, Kiselev KV (2019) Induction of transgene suppression in plants via external application of synthetic dsRNA. Int J Mol Sci 20:1585

    Article  CAS  PubMed Central  Google Scholar 

  • Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fletcher SJ, Reeves PT, Hoang BT, Mitter N (2020) A perspective on RNAi-based biopesticides. Front Plant Sci 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Holm T, Johansson H, Lundberg P, Pooga M, Lindgren M, Langel U (2006) Studying the uptake of cell-penetrating peptides. Nat Protoc 1:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Iandolino A, Peel G (2016) Methods and compositions for introducing nucleic acids into plants. Patent No. WO2016196782A1

  • Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2018) Knockdown of an inflorescence meristem-specific cytokinin oxidase OsCKX2 in rice reduces yield penalty under salinity stress conditions. Plant Cell Environ 41:936–946

    Article  CAS  PubMed  Google Scholar 

  • Joubès J, De Schutter K, Verkest A, Inzé D, De Veylder L (2004) Conditional recombinase-mediated expression of genes in plant cell cultures. Plant J 37:889–896

    Article  PubMed  Google Scholar 

  • Kauffman WB, Fuselier T, He J, Wimley WC (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40:749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, McMillan J, Mentzel T, Kogel KH (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 12:e1005901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Liu H, Yang Y, Zhen P, Liang J (2009) Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci 16:14–20

    Article  Google Scholar 

  • Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30:203–212

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Li HY, Shen J, Wang J, Jiang L (2011) QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. J Exp Bot 62:5063–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes origin and current landscape. Drug Discov Today 17:850–860

    Article  CAS  PubMed  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207

    Article  CAS  PubMed  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Xu ZP, Carroll BJ (2017) Induction of virus resistance by exogenous application of double-stranded RNA. Curr Opin Virol 26:49–55

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Numata K, Horii Y, Oikawa K, Miyagi Y, Demura T, Ohtani M (2018) Library screening of cell-penetrating peptide for BY-2 cells leaves of Arabidopsis, tobacco, tomato, poplar and rice callus. Sci Rep 8:10966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Numata K, Ohtani M, Yoshizumi T, Demura T, Kodama Y (2014) Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnol J 12:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Okubo-Kurihara E, Ohtani M, Kurihara Y, Kakegawa K, Kobayashi M, Nagata N, Komatsu T, Kikuchi J, Cutler S, Demura T, Matsui M (2016) Modification of plant cell wall structure accompanied by enhancement of saccharification efficiency using a chemical, lasalocid sodium. Sci Rep 6:34602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palin RJ (2011) A comparison of cell wall properties of Arabidopsis thaliana. PhD thesis, University of Birmingham, Birmingham, UK

  • Rodrigues T, Sridharan K, Manley B, Cunningham D, Narva K (2021) Development of dsRNA as a sustainable bioinsecticide: from laboratory to field. In: Rauzan and Lorsbach (Eds.) Crop protection products for sustainable agriculture, ACS Symposium series, 1390, ACS Publications, Washington DC, USA, 65–82

  • Romeis J, Widmer F (2020) Assessing the risks of topically applied dsRNA-based products to non-target arthropods. Front Plant Sci 11:679

    Article  PubMed  PubMed Central  Google Scholar 

  • San Miguel K, Scott JG (2016) The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci 72:801–809

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59:1212–1221

    Article  CAS  PubMed  Google Scholar 

  • Shew AM, Danforth DM, Nalley LL, Nayga RM Jr, Tsiboe F, Dixon BL (2017) New innovations in agricultural biotech: consumer acceptance of topical RNAi in rice production. Food Control 81:189–195

    Article  CAS  Google Scholar 

  • Taning CNT, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H, Mezzetti B, Sabbadini S, Sorteberg HG, Sweet J, Ventura V, Smagghe G (2020) RNA-based biocontrol compounds: current status and perspectives to reach the market. Pest Manag Sci 76:841–845

    Article  CAS  PubMed  Google Scholar 

  • Unnamalai N, Kang BG, Lee WS (2004) Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Lett 566:307–310

    Article  CAS  PubMed  Google Scholar 

  • Uslu VV, Bassler A, Krczal G, Wassenegger M (2020) High-pressure-sprayed double stranded RNA does not induce RNA interference of a reporter gene. Front Plant Sci 11:534391

    Article  PubMed  PubMed Central  Google Scholar 

  • Uslu VV, Wassenegger M (2020) Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA. Curr Opin Virol 42:18–24

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 19:16151

    Article  CAS  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA interference (RNAi) induced gene silencing: a promising approach of Hi-Tech plant breeding. Int J Biol Sci 10:1150–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The PSB-D and BY-2 cells were obtained from the Plant Systems Biology department of the VIB-UGent (Belgium). The pPTD-DRBD vector was a gift from Steven Dowdy (Addgene plasmid # 35622).

Funding

This research was funded by the Research Foundation-Flanders (Belgium) and the Special Research Fund of Ghent University (Belgium).

Author information

Authors and Affiliations

Authors

Contributions

KDS, DK, LS, EJMVD, and GS conceived and designed research. KDS and IV conducted experiments. KDS analyzed data. KDS, EJMVD, and GS wrote and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Guy Smagghe.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 416 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Schutter, K., Verbeke, I., Kontogiannatos, D. et al. Use of cell cultures in vitro to assess the uptake of long dsRNA in plant cells. In Vitro Cell.Dev.Biol.-Plant 58, 511–520 (2022). https://doi.org/10.1007/s11627-022-10260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-022-10260-1

Keywords

Navigation