Skip to main content
Log in

Soybean androgenesis II: non-gametophytic morphologies in isolated microspore culture

  • Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2024

This article has been updated

Abstract

Gametophytic embryogenesis is a process capable of accelerating trait discovery and cultivar development in plant-breeding programs. However, recalcitrance to morphogenic stimuli has limited such work in many crops of interest, especially among fabaceous species such as soybean (Glycine max [L.] Merrill). In complementary studies, donor plant and culture conditions were documented to successfully divert isolated soybean microspores from a gametophytic pathway; these findings were reinforced through transcriptomic analysis of microspores subjected to pretreatment temperature stress, suggesting cellular dedifferentiation through suppression of the pollen developmental program. In the present study, cytological characteristics were observed in isolated microspore culture, which evidenced non-gametophytic development. These phenotypes included (i) inhibition of daughter cell specialization, (ii) pollen dimorphism, and (iii) exine rupture, among others. The outlined morphologies were placed into the context of established gametophytic embryogenesis platforms, further supporting previous claims of cell fate redirection in soybean microspores. The present study provides insight into gametophytic embryogenesis induction via isolated microspore culture and may prove useful for the investigation of soybean androgenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Change history

References

  • Ahmadi B, Ebrahimzadeh H (2020) In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Rep 39:299–316

    Article  CAS  PubMed  Google Scholar 

  • Armstrong TA, Metz SG, Mascia PN (1987) Two regeneration systems for the production of haploid plants from wheat anther culture. Plant Sci 51:231–237

    Article  Google Scholar 

  • Bolik M, Koop HU (1991) Identification of embryogenic microspores of barley (Hordeum vulgare L.) by individual selection and culture and their potential for transformation by microinjection. Protoplasma 162:61–68

    Article  Google Scholar 

  • Borderies G, Le Béchec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: Arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212

    Article  CAS  PubMed  Google Scholar 

  • Brew-Appiah RA, Ankrah N, Liu W, Konzak CF, von Wettstein D, Rustgi S (2013) Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS One 8:11

    Article  Google Scholar 

  • Cistué L, Romagosa I, Batlle F, Echávarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28:727–735

    Article  PubMed  Google Scholar 

  • Croser JS, Lulsdorf MM, Grewal RK, Usher KM, Siddique KH (2011) Isolated microspore culture of chickpea (Cicer arietinum L.): induction of androgenesis and cytological analysis of early haploid divisions. In Vitro Cell Dev Biol — Plant 47:357–368

    Article  CAS  Google Scholar 

  • Dale PJ (1975) Pollen dimorphism and anther culture in barley. Planta 127:213–220

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotech J 8:377–424

    Article  CAS  Google Scholar 

  • El-Tantawy AA, Solís MT, Da Costa ML, Coimbra S, Risueño MC, Testillano PS (2013) Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reprod 26:231–243

    Article  CAS  PubMed  Google Scholar 

  • Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta (BBA)-Gene Reg Mech 1849:385–402

    Article  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104:301–309

  • Garda M, Hale B, Rao N, Lowe M, Bright M, Goodling S, Phillips GC (2020) Soybean androgenesis I: identification of pyramidal stressors in anther cultures that sustain cell divisions and embryo formation from isolated microspore cultures. In Vitro Cell Dev Biol – Plant 56:415–429

    Article  CAS  Google Scholar 

  • Greenway MB, Phillips IC, Lloyd MN, Hubstenberger JH, Phillips GC (2012) A nutrient medium for diverse applications and tissue growth of plant species in vitro. In Vitro Cell Dev Biol — Plant 48:403–410

    Article  CAS  Google Scholar 

  • Hale B, Phipps C, Rao N, Wijeratne A, Phillips GC (2020) Differential expression profiling reveals stress-induced cell fate divergence in soybean microspores. Plants 9:1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Ubaldo H, De Folter S (2018) Exploring cell wall composition and modifications during the development of the gynoecium medial domain in Arabidopsis. Front Plant Sci 9:454

    Article  PubMed  PubMed Central  Google Scholar 

  • Höfer M, Touraev A, Heberle-Bors E (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep 18:1012–1017

    Article  Google Scholar 

  • Horner M, Street HE (1978) Pollen dimorphism—origin and significance in pollen plant formation by anther culture. Ann Bot 42:763–771

    Article  Google Scholar 

  • Indrianto A, Barinova I, Touraev A, Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta 212:163–174

    Article  CAS  PubMed  Google Scholar 

  • Kaltchuk-Santos E, Mariath JE, Mundstock E, Hu CY, Bodanese-Zanettini MH (1997) Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tiss Org Cult 49:107–115

  • Kaltchuk-Santos E, Zanettini MHB, Mundstock E (1993) Pollen dimorphism in soybean. Protoplasma 174:74–78

    Article  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    Article  CAS  PubMed  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Article  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and Breeding of Food Legumes, vol 11. CABI Publishing, Cambridge, pp 159–177

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, 428 pp

    Book  Google Scholar 

  • Maraschin SDF, Gaussand G, Pulido A, Olmedilla A, Lamers GE, Korthout H, Wang M (2005a) Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221:459–470

    Article  PubMed  Google Scholar 

  • Maraschin SDF, Vennik M, Lamers GE, Spaink HP, Wang M (2005b) Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta 220:531–540

    Article  CAS  Google Scholar 

  • Moraes AP, Bonadese-Zanettini MH, Callegari-Jacques M, Kaltchuk-Santos E (2004) Effect of temperature shock on soybean microspore embryogenesis. Braz Arch Biol Technol 47:537–544

    Article  Google Scholar 

  • Nitta T, Takahata Y, Kaizuma N (1997) Scanning electron microscopy of microspore embryogenesis in Brassica spp. Plant Cell Rep 16:406–410

    CAS  PubMed  Google Scholar 

  • Norreel B (1970) Étude cytologique de l'androgénèse expérimentale chez Nicotiania tabacum et Datura innoxia. Bull Soc Bot France 117:461–478

    Article  Google Scholar 

  • Obert B, Szabó L, Mitykó J, Preťová A, Barnabás B (2005) Morphological events in cultures of mechanically isolated maize microspores. In Vitro Cell Dev Biol - Plant 41:775–782

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  CAS  PubMed  Google Scholar 

  • Phillips GC, Collins GB (1979) In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci 19:59–64

    Article  Google Scholar 

  • Phillips GC, Collins GB (1980) Somatic embryogenesis from cell suspension cultures of red clover. Crop Sci 20:323–326

    Article  CAS  Google Scholar 

  • Pulido A, Bakos F, Castillo A, Vallés MP, Barnabas B, Olmedilla A (2005) Cytological and ultrastructural changes induced in anther and isolated-microspore cultures in barley: Fe deposits in isolated-microspore cultures. J Struct Biol 149:170–181

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Found. Stat, Comp

    Google Scholar 

  • Ranch JP, Oglesby L, Zielinski AC (1986) Plant regeneration from tissue cultures of soybean by somatic embryogenesis. In: Vasil IK (ed) Cell Cult Som Cell Gen Plants, vol 3. Academic Press, NY, pp 97–110

  • Rao PS, Suprasanna P (1996) Methods to double haploid chromosome numbers. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Springer, Dordrecht, pp 317–339

    Chapter  Google Scholar 

  • Rashid A (1983) Pollen dimorphism in relation to pollen plant formation. Physiol Plant 58:544–548

    Article  Google Scholar 

  • Rashid A, Street HE (1974) Segmentations in microspores of Nicotiana sylvestris and Nicotiana tabacum which lead to embryoid formation in anther cultures. Protoplasma 80:323–334

    Article  Google Scholar 

  • Rodrigues LR, Forte BC, Bodanese-Zanettini MH (2006) Isolation and culture of soybean (Glycine max L. Merrill) microspores and pollen grains. Braz Arch Biol Technol 49:537–545

    Article  Google Scholar 

  • Rodrigues LR, Forte BC, Oliveira JMS, Mariath JEA, Bodanese-Zanettini MH (2004) Effects of light conditions and 2,4-D concentration in soybean anther culture. Plant Growth Regul 44:125–131

    Article  CAS  Google Scholar 

  • Sax K (1937) Effect of variations in temperature on nuclear and cell division in Tradescantia. Am J Bot 24:218–225

    Article  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the reprogramming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Shumilina D, Kornyukhin D, Domblides E, Soldatenko A, Artemyeva A (2020) Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica rapa ssp. Rapa L. Plants 9:278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 208:383–391

    Article  CAS  Google Scholar 

  • Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Soriano M, Li H, Jacquard C, Angenent GC, Krochko J, Offringa R, Boutilier K (2014) Plasticity in cell division patterns and auxin transport dependency during in vitro embryogenesis in Brassica napus. Plant Cell 26:2568–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone BA, Evans NA, Bonig I, Clarke AE (1984) The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122:191–195

    Article  CAS  Google Scholar 

  • Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111(A3.B):1–3

    Google Scholar 

  • Sunderland N, Wicks FM (1971) Embryoid formation in pollen grains of Nicotiana tabacum. J Exp Bot 22:213–226

    Article  Google Scholar 

  • Tan BH, Halloran GM (1982) Pollen dimorphism and the frequency of inductive anthers in anther culture of Triticum monococcum. Biochem Physiol Pflanz 177:197–202

    Article  Google Scholar 

  • Tanaka I, Ito M (1981) Control of division patterns in explanted microspores of Tulipa gesneriana. Protoplasma 108:329–340

    Article  Google Scholar 

  • Tang XC, He YQ, Wang Y, Sun MX (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57:2639–2650

    Article  CAS  PubMed  Google Scholar 

  • Tang XC, Sun MX (2007) Exine-dehisced microspores: a novel model system for studying embryogenesis. Int J Plant Dev Bio 1:28–33

    Google Scholar 

  • Tang XC, Liu Y, He Y, Ma L, Sun MX (2013) Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo. J Exp Bot 64:215–228

    Article  CAS  PubMed  Google Scholar 

  • Telmer CA, Newcomb W, Simmonds DH (1995) Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas Protoplasma 185:106–112

    Article  Google Scholar 

  • Testillano PS (2019) Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J Exp Bot 70:2965–2978

    Article  CAS  PubMed  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Touraev A, Lezin F, Heberle-Bors E, Vicente O (1995) Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sex Plant Reprod 8:70–76

    Article  Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res:53–109

  • Valera-Montero LL, Phillips GC (2005) Long-lasting Capsicum baccatum ‘organogenic callus’ formation. In Vitro Cell Dev Biol — Plant 41:470–476

    Article  Google Scholar 

  • van Hengel AJ, Guzzo F, van Kammen A, de Vries SC (1993) Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol 117:43–53

    Article  Google Scholar 

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, Van Kammen AB, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasil IK, Vasil V (1972) Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8:117–125

    Article  CAS  PubMed  Google Scholar 

  • Wagley LM, Gladfelter HJ, Phillips GC (1987) De novo shoot organogenesis of Pinus eldarica Medw. in vitro. Plant Cell Rep 6:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E, Gotębiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A et al (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 1–33

    Google Scholar 

  • Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv Topas. I. Histodifferentiation. Int J Plant Sci 157:27–39

    Article  Google Scholar 

  • Zaki MAM, Dickinson HG (1990) Structural changes during the first divisions of embryos resulting from anther and free microspore culture in Brassica napus. Protoplasma 156:149–162

    Article  Google Scholar 

  • Zaki MAM, Dickinson HG (1991) Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Żur I, Dubas E, Słomka A, Dubert F, Kuta E, Płażek A (2013) Failure of androgenesis in Miscanthus × giganteus in vitro culture of cytologically unbalanced microspores. Plant Reprod 26:297–307

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge and are appreciative of the intellectual contribution from the Corteva Agriscience Doubled Haploid and Core Technologies teams, especially Dr. Sreekala Chellamma, Dr. Pon Samuel, Dr. Yue Yun, and Pa Lor. Additional technical support was provided by Dr. Jianfeng Xu at Arkansas State University.

Funding

This research was supported by grants from USDA-NIFA Non-Land Grant Colleges of Agriculture Capacity Building award number 2018-70001-28762, Arkansas Soybean Promotion Board, University of Arkansas System Division of Agriculture, and Corteva Agriscience Open Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Hale.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Editor: Nancy Reichert

The original version of this article was revised: Panels c, e, and f of Fig. 2 were incorrect in the article as originally published and have been replaced. In addition, the information provided for panel c in the figure caption has been modified.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hale, B., Phipps, C., Rao, N. et al. Soybean androgenesis II: non-gametophytic morphologies in isolated microspore culture. In Vitro Cell.Dev.Biol.-Plant 57, 356–364 (2021). https://doi.org/10.1007/s11627-020-10144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10144-2

Keywords

Navigation